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ABSTRACT

Labeling problem, due to its versatile modeling ability, is widely used in various

image analysis tasks. In practice, certain prior information is often available to be

embedded in the model to increase accuracy and robustness. However, it is not always

straightforward to formulate the problem so that the prior information is correctly

incorporated. It is even more challenging that the proposed model admits efficient

algorithms to find globally optimal solution.

In this dissertation, a series of natural and medical image segmentation tasks

are modeled as labeling problems. Each proposed model incorporates different useful

prior information. These prior information includes ordering constraints between cer-

tain labels, soft user input enforcement, multi-scale context between over-segmented

regions and original voxel, multi-modality context prior, location context between

multiple modalities, star-shape prior, and gradient vector flow shape prior.

With judicious exploitation of each problem’s intricate structure, efficient and

exact algorithms are designed for all proposed models. The efficient computation

allow the proposed models to be applied on large natural and medical image datasets

using small memory footprint and reasonable running time. The global optimality

guarantee makes the methods robust to local noise and easy to debug.

The proposed models and algorithms are validated on multiple experiments,

using both natural and medical images. Promising and competitive results are shown

compared to state-of-art.
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PUBLIC ABSTRACT

Image segmentation, which extracts the target object from background, is an

important task for both natural and medical images. It is natural to model image

segmentation as a labeling problem in which every voxel gets a label indicating ob-

ject or background. Various prior information for different applications are usually

available in practice problems. In fact, for many tasks, the incorporation of prior

information may be the key to achieve successful segmentations.

However, it is not always straightforward to enforce certain prior constraints

in the labeling formulation correctly. What’s even more challenging, the designed

model may not have efficient algorithm to find the globally optimal solution.

In this dissertation, a series of labeling problems incorporating various useful

prior information are proposed. Moreover, the globally optimal solution for all the

proposed models can be computed using efficient algorithms. The proposed models

and algorithms are validated on multiple applications of natural and medical image

segmentation tasks. The experiment shows promising results competitive to the state-

of-art.
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CHAPTER 1
INTRODUCTION

Labeling problems are widely used to formulate natural and medical image

analysis problems. The advantages of using this formulation are mainly three-folds:

1) a global energy formulation is more robust to local noise in images; 2) flexible

modeling ability by introducing various terms including unary, pairwise or high-order

terms; 3) efficient exact or approximate solutions for a large set of useful models.

My Ph.D. thesis identifies a series of labeling problems with different prior in-

formation, propose efficient and exact solution for them, and validate the model and

algorithm on natural or medical image applications. All the proposed works have a

special emphasis of finding globally optimal solution efficiently. The guarantee of a

globally optimal solution greatly reduces the burden of application development cycle.

With the globally optimality guarantee, if the application is not working satisfactorily,

then we can safely concentrate our work on designing better image feature computa-

tion methods. Without this guarantee, we will be constantly wondering whether the

poor result comes from the poor image feature computation or the poor optimization

ability of the optimization method we use. Being efficient, the proposed works will

be applicable to very large problems, which is required by most of the 3D and 4D

image applications.

The introduction is organized as follows. First, an introduction about the

general labeling problem formulation and optimization techniques is given in Sec.1.1

and 1.2. In Sec.1.3 and 1.4 two popular techniques for solving labeling problems:
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graph-cut [52] and graph-search [15] are reviewed. These two methods motivate the

proposed works and are building blocks of a large portion of the proposed methods.

A summary of the dissertation is then given in Sec.1.5. Seven labeling problems with

different prior information are introduced one by one. Finally, all specific aims are

summed up concisely from the point view of labeling problems with different priors

in Sec.1.6.

1.1 Labeling Problem

Many problems in computer vision and medical image analysis have been mod-

eled as a labeling problem, including stereo matching [15], texture restoration [41, 40],

binary interactive image segmentation [14, 12], and multi-label image segmenta-

tion [24], etc. A labeling problem formulation aims to label every pixel p with an

integer valued label xp ∈ L, where L = {1, 2, . . . , |L| − 1} is the set of all available

labels. The labeling is computed by minimizing an energy function that reflects both

image information and some prior informations we expect from the labeling.

A typical labeling problem defines an energy function in the form of Eq.(1.1).

E(x) =
∑
p

Dp(xp) +
∑

(p,q)∈N2

Vpq(xp, xq) +
∑

{ik}∈NK

V{ik}(xi1 , . . . , xiK ), K ≥ 3 (1.1)

The first term Dp(xp) is a unary term (also called ‘data term’) defining the

likelihood of assigning label xp to pixel p. The unary data term reflects image infor-

mation. The second term Vpq(xp, xq) is a pairwise term that reflects the prior penalty

of assigning label xp to pixel p and label xq for pixel q for pixel pair (p, q) in a neigh-
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borhood setting N2. Similarly, the third term V{ik} is a high-order term (K ≥ 3)

that reflects the prior penalty of assigning labels xi1 , xi2 , . . . , xiK respectively to pix-

els i1, i2, . . . , iK for pixel set {ik} in a high-order neighborhood setting (also called

‘clique’), which defines a neighborhood involving at least three variables.

Let’s look at a concrete example. Suppose we are trying to segment a single-

pixel-wide curve in the image. Then the labeling set is binary L = {0, 1}, where 0

denotes the background and 1 denotes the object, i.e., the curve. The unary term

Dp(xp) reflects the reverse likelihood of pixel p being labeled as xp. For example, if

we know the curve is black and the background is white, then the higher the intensity

is, the less likely pixel p is going to be object. The pairwise term Vpq will in general

encourages the two adjacent neighboring pixels (according to 4-neighborhood or 8-

neighborhood setting) to have the same label, which prevents a cluttered labeling

where adjacent pixels frequently having different labels. The high-order term can be

defined on a neighborhood N3 involving any three consecutive pixels on a straight

line. We can use this term to encourage the segmentation to be single pixel wide. For

example, Vi1,i2,i3(xi1 = 0, xi2 = 1, xi3 = 0) will be low since this represents a single

pixel wide line going through pixel i2. However, Vi1,i2,i3(xi1 = 0, xi2 = 1, xi3 = 1) will

be high since this usually signals a line more than one pixel wide.

1.2 Labeling Problem Categories

Labeling problem in Eq.(1.1) in general is NP-hard. For certain special cases,

efficient algorithms exist for globally optimal solution. An import subset of these



www.manaraa.com

4

special cases uses only the unary term and pairwise term in Eq.(1.1).

E(x) =
∑
p

Dp(xp) +
∑

(p,q)∈N2

Vpq(xp, xq) (1.2)

Assume all variables in Eq.(1.2) are binary, then given a mild condition (being

submodular) on the pairwise term, Eq.(1.2) can be efficiently and exactly minimized

by graph-cut [50]. The problem is reduced to a single minimum s-t cut computation in

an appropriately constructed graph, given that Vpq(xp, xq) is submodular for all pairs

of (p, q) ∈ N2. A pairwise function V (x, y) is submodular if and only if V (1, 1) +

V (0, 0) ≤ V (1, 0) +V (0, 1). Luckily many useful pairwise priors are submodular. For

example, in the binary image segmentation problem, we often set V (1, 1) = V (0, 0) =

0 to encourage smooth labeling. The rationale is that if we set V (1, 0) and V (0, 1)

to have lower penalty than V (0, 0) and V (1, 1), we are effectively encouraging a very

cluttered segmentation similar to a checkerboard pattern, which is usually not what

we want. The graph-cut technique will be discussed in more details in Sec.1.3.

For the non-submodular labeling problems that cannot be exactly minimized

by graph-cut, several techniques, such as quadratic pseudo boolean optimization [49],

belief propagation [29], and tree-reweighted message passing [48], can achieve ap-

proximate solutions. Quadratic pseudo boolean optimization (QPBO) is an iterative

combinatorial optimization method which computes a series of minimum s-t cut [49].

It outputs partial optimal labeling, in which some variables may not be labeled at

all. But all the labeled variables are guaranteed to be labeled exactly as some opti-

mal solution. Max-product loopy belief propagation [29] and tree-reweighted message
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passing [48] are two methods based on solving linear program relaxation, which in-

volves the relaxation of the variables to be continuous, solving the relaxed problem,

and then rounding the solution to be an integral one. These relaxation methods can

provide a lower-bound to the optimal integral solution. However, the rounding step

cannot provide optimality guarantee on the rounded integral solution.

Given the pairwise term V (x, y) is a convex function of |x − y|, the multi-

labeling version of Eq.(1.2) can be efficiently and exactly minimized by graph-search

[106]. The problem is also reduced to a single minimum s-t cut computation. Graph-

search uses ‘columns’ to transform the multi-labeling problem equivalently to a binary

labeling problem in which every ‘column’ will corresponds to all possible values of a

variable. This ‘column’ structures enables elegant incorporation of various priors like

minimum/maximum surface distance constraints when applied to the multi-surface

segmentation problem [52], which proves to be very beneficial for medical image

segmentation where such prior informations are usually vital to obtain good segmen-

tation [87, 33, 34, 51, 80]. Graph-search technique will be discussed in more details

in Sec.1.4.

For general pairwise term V (x, y), the multi-labeling energy in Eq.(1.2) can be

approximately solved by α-expansion, and α, β-swap techniques [15]. Both techniques

reduce the problem to a series of binary problems and optimizes the energy iteratively.

In each binary problem, the algorithm computes a minimum s-t cut to determine

an optimal binary move that guarantees not to increase the energy. The iteration

continues until no binary moves can decrease the energy any more. For example, in
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each α-expansion iteration, each variable has to make a binary decision: either retain

its original labeling, or change to a predefined label α. The iteration continues until

no label α ∈ L can decrease the energy by any binary move (called α-expansion) any

more.

The high-order terms in Eq.(1.1) are less frequently used due to the fact that

useful high-order terms often lead to NP-hard problems. But there are applications

that require such high-order priors, such as texture restoration [41, 40] and vessel

segmentation [45]. For the binary variables, Ishikawa et al. [40] proposes a method

to reduce high-order term to possibly exponential number of multiple pairwise terms.

The reduced pairwise terms are usually non-submodular. This requires techniques

such as QPBO to optimize the resulting pairwise term.

For the high-order terms with multiple possible variable values, the multi-

labeling problem is first transformed to an equivalent binary high-order labeling

problem using the “column” technique in graph-search [52, 106]. The resulting binary

high-order labeling problem is then reduced to a binary labeling problem with only

pairwise terms. Finally techniques optimizing binary pairwise labeling problems, such

as QPBO, are used to get the approximate solution.

1.3 Graph-Cut

Graph-cut is widely used for binary interactive segmentation[12, 14, 72]. The

segmentation problem is reduced to a binary labeling problem with a unary term and

submodular pairwise term as in Eq.(1.2). Each pixel in the image corresponds to a
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(a) input image (b) seed pixels (c) graph-cut result
s

object

arc for boundary term

arc for unary term
(segmented as bg)

arc for unary term
(segmented as object)  

pixel vertex

t

(d) graph construction

Figure 1.1: Graph-cut interactive binary image segmentation example. (a)(b)(c)

shows a typical graph-cut based interactive segmentation process. (d) shows the

graph construction of graph-cut.
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variable. If the variable is labeled as 0, then the pixel is segmented as background. If

the variable is labeled as 1, then the pixel is segmented as object.

The user usually needs to specify some object seeds and background seeds,

as shown in Fig.1.1b. The seed pixels are used to build two models for object and

background respectively. The model is usually based on color, but more complex

models incorporating texture and other information is also possible. The two models

are used to compute the likelihood of each pixel being object or background. These

likelihood corresponds to the unary term Dp(xp) in Eq.(1.2).

The pairwise term in Eq.(1.2) is usually set according to gradient informa-

tion from image. Vpq(0, 0) and Vpq(1, 1) are both set to be zero. While Vpq(0, 1) and

Vpq(1, 0) are both set to be reversely proportional to the gradient between pixel p

and q, i.e., Vpq(0, 1) = Vpq(1, 0) ∝ exp(−|∇g(Ip, Iq)|/σ2) where ∇g(Ip, Iq) is the gra-

dient value between intensities Ip and Iq. σ is a tuning parameter controlling how

concentrated or spread the pairwise terms are throughout the image.

A graph is then constructed as shown in Fig.1.1d. Every pixel corresponds

to a vertex in the graph. Two additional vertex: source vertex s and sink vertex t

are also added. An arc exists from s to every pixel vertex carrying a certain weight

(dark blue arcs). And arc also exists from every pixel vertex to t carrying another

weight (red arcs). The weights on these arcs encode the unary terms in Eq.(1.2). For

every pair of neighboring pixels p, q according to a 4-neighborhood setting, two arcs

connecting the two pixel vertices are also added to encode the pairwise term (light

blue arcs).
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(c) surface distance constraint

Figure 1.2: Graph-search finds multiple interacting terrain-like surfaces with various

geometric constraints.

An s-t cut in a graph is defined as a subset of arcs such that the removal of

them leads to a 2-partition of the graph vertices: source set and sink set. All vertices

in the source set are reachable from source vertex s after the removal of the arcs in

the cut. All other vertices are in the sink set. A minimum s-t cut aims to find a

cut in the graph such that the sum of arc weights from source set vertices to sink set

vertices is minimum. Recall that the graph-cut construction uses arc weight to encode

the unary and pairwise terms, thus, a minimum s-t cut corresponds to a minimized

energy in Eq.(1.2). All pixels corresponding to vertices in the source set are labeled

as object in the segmentation and all other pixels are labeled as background. Fig.1.1c

shows an example graph-cut segmentation.

1.4 Graph-Search

Graph-search (also known as LOGISMOS [110, 64]) is widely used for medical

image segmentation [52, 34, 87]. This technique can segment objects with complex

topologies provided a pre-segmentation of the target object. However, it is easier to

describe it when it’s used to segment a terrain-like surface. Assume a 3D image has
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size X × Y × Z, then a terrain-like surface is a mapping X × Y → Z. In another

word, for every (x, y) location, a ‘column height’ z defines the location of the surface

at current (x, y)-column (Fig.1.2a). If we treat the ‘column height’ zp at column p

as a variable, then the possible values for the variable zp are {0, 1, . . . , Z − 1}. And

each terrain-like surface is equivalent to a multi-labeling for every variable zp at every

column location p = (x, y) ∈ X × Y .

For each labeling l of a column p, we have an associated unary cost Dp(zp = l).

Graph-search aims to find such a surface (i.e., multi-labeling) to minimize the sum of

the unary terms. Without any pairwise term, this problem is trivial to solve in linear

time. However, with the pairwise terms expressed as the smoothness constraint,

min/max surface distance constraints, this problem requires the computation of a

single minimum s-t cut in an appropriately constructed graph [106].

The column structure enables graph-search to incorporate a series of useful

prior informations:

1. smoothness constraint: the column height difference at two adjacent columns

can be restricted to be within a pre-defined threshold. In another word, for

adjacent columns p, q, we require |zp − zq| ≤ ∆pq, (p, q) ∈ N , where ∆pq is the

smoothness constraint value. The column height difference between column p

and column q is required to be no larger than ∆pq. See Fig.1.2bfor a smoothness

constraint example.

2. minimum surface distance constraint: when segmenting two interacting terrain-

like surfaces, we may wish to segment them with a minimum distance between
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(a) OCT image (b) graph-search result

Figure 1.3: Graph-search segments multiple interacting surfaces in OCT images. The

smoothness constraints and min/max surface distance constraints are vital for the

successful segmentation.

the two surfaces. In another word, for each column p, two column heights z1
p

and z2
p correspond to two surfaces S1 and S2, and we require z1

p−z2
p ≥ δ12

p , where

δ12
p is the minimum surface distance between surfaces S1 and S2 at column p.

See Fig.1.2c for a minimum surface distance constraint example.

3. maximum surface distance constraint: similar to minimum surface distance con-

straint, we can enforce two surfaces with a maximum surface distance between

them, i.e., z1
p−z2

p ≤ ∆12
p . See Fig.1.2c for a maximum surface distance constriant

example.

These geometrical constraints prove to be quite helpful for various medical

image segmentation problems, such as retinal layer segmentation [34], prostate and

bladder segmentation [87], and brain gray and white matter segmentation [64], etc.

Fig.1.3 shows an example of retinal layer segmentation in OCT images. Without

the smoothness constraint and min/max surface distance constraints, this problem is

hard to be segmented satisfactorily.
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1.5 Summary Of Projects

Prior information, when combined in the labeling problem formulation, can

help achieve more accurate and robust results. In my Ph.D. thesis, seven labeling

problems with different prior informations are proposed with efficient and exact so-

lutions.

In Sec.1.5.1, a geometric scene labeling problem is proposed with geometric

ordering constraints. This ordering prior prevents unreasonable geometric relation-

ships in the final labeling, e.g., “top” pixel cannot appear under a “bottom” pixel.

In Sec.1.5.2, the assumption of classical graph-cut that all user-specified seed pixels

are accurate is removed. The prior that user-specified seed pixels may contain error

requires a novel soft way to encourage the user-specified seed pixels to be respected

in the final segmentation. Sec.1.5.3 proposes a multi-scale segmentation technique

with interacting surface priors. One or more interacting surface(s) and the target ob-

ject are simultaneously segmented to achieve more robust segmentations. One over-

segmentation of the original image is also proposed to be interacting with the pixel-

wise target object formulation to facilitate image information propagation in a larger

neighborhood. Sec.1.5.4 proposes a volume agreement encouragement prior between

the tumor volume segmented in PET scan and multiple tumor volumes segmented in

CT scan from different breathing phases. This prior will lead to more robust tumor

volume segmentations in different breathing phases. Sec.1.5.5 incorporates locational

information along with traditional intensity information in the multi-modality context

prior term to achieve more accurate multi-modality co-segmentation. In Sec.1.5.6, a
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novel star-shaped prior is proposed to be incorporated in the graph-search frame-

work. Working directly in the voxel grid space, the proposed method eliminates the

typical “unwrapping” procedure required to handle such complex shaped objects. In

Sec.1.5.7, a novel gradient vector flow shape prior is incorporated into a graph-based

multi-object segmentation framework. The flexible and powerful shape prior takes

advantage of the shape information from a pre-segmentation while admitting efficient

and exact solution to a simultaneous multi-object segmentation framework.

1.5.1 Labeling with ordering constraint

The geometric scene labeling problem in the natural images aims to segment

the image into multiple coherent regions according to their geometric relationships.

A useful special case aims to label every pixel as one of five labels: “top”, “bottom”,

“left”, “right”, and “center”. The labeling must obey certain ordering constraints :

a “top” pixel may never appear under “bottom”, a “left” pixel may never appear in

the right of “right”, etc. See Fig.1.4a for an illustration of the model. Fig.1.4b and

1.4c show an example application of the proposed 5-parts labeling model.

The order-preserving moves algorithm is proposed to solve the problem [57, 56].

It modifies the popular α-expansion algorithm to make sure the ordering constraints

are respected in each move. In each move, the algorithm solves a minimum s-t cut

problem. However, the problem does not guarantee globally optimal solution and

may get stuck in a local minimum that’s arbitrarily far from the optimal solution.

Tiered structure labeling method [30] is a dynamic programming based al-
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Top

RightCenterLeft

Bottom

(a) 5-parts model (b) input (c) scene labeling

Figure 1.4: Five-parts labeling model and its application on geometric scene labeling.

The five-parts labeling model aims to label each pixel as one of {“top”, “bottom”,

“left”, “right”, “center”}, with geometric constraints among the labeling.

gorithm which may solve the 5-labeling problem as a special case. This problem

guarantees the optimal solution. However, it requires O(N1.5) memory space to solve

the problem, where N is the number of pixels in the image. The large memory con-

sumption may cause difficulty processing large images and may make the algorithm

run slow in practice due to cache issues.

A novel dynamic programming based algorithm is proposed to exactly solve

the problem with only O(N) memory. The theoretical running time is O(N1.5), the

same as tiered structure labeling [30]. But the practical running time is faster possibly

due to the higher cache hit rate brought by our method’s smaller memory footprint.

Moreover, our method can be parallelized much easier.

1.5.2 Robust interactive segmentation

Although graph-cut is widely used for binary segmentation. It assumes the

object and background seed pixels specified by user are perfectly accurate. This

assumption is hardly true for challenging images, and the seed pixels given on touch
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(a) scribbles (b) graph-cut (c) Subr’s [89] (d) proposed

Figure 1.5: The proposed method tolerates errors in user-specified scribbles and is

better at segmenting fine structures in an image.

screen. Fig.1.5a shows a careless user input, which is likely to happen on a touch

screen device. Fig.1.5b is the segmentation of traditional graph-cut, which assumes

all user input are perfectly accurate.

Various techniques have been proposed to use user seed as soft constraint. An

et al. [4] formalizes the image editing problem (which is a “soft” segmentation instead

of binary segmentation) as a quadratic optimization problem based on pixel affinity

matrix among all pairs of pixels. Li et al. [54] observed the above optimization

problem is essentially a smooth function with a sparse set of constraints. Based

on this observation, the segmentation is approximately achieved by the composition

of a series of radial basis functions in the pixel appearance space. However, both

methods only output a continuous probability map of the image instead of a binary

segmentation.

Liu et al. proposes a method [55] which allows user to interactively override

previous erroneous seed pixels. However, the new seed pixels are again assumed to be
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perfectly accurate. Sener et al. [75] develops a heuristic preprocessing step to identify

erroneous part of the user input and exclude them from being used as seed pixels in

the following graph-cut segmentation. Subr et al. [89] uses a dense conditional random

field (CRF) to infer the segmentation from inaccurate user input. The dense CRF is

approximated by an embedding in a low-dimensional Euclidean space. Fig.1.5c shows

an example segmentation of Subr’s method [89].

A novel ratio energy is proposed which simultaneously minimizes a graph-cut

energy on the numerator and maximizes a seed utility term on the denominator. The

seed utility term encourages the seed pixels to be labeled as the way user specifies

them in general, but allows it to have opposite label if strong evidence is present.The

ratio energy can be efficiently and exactly minimized by the Newton’s algorithm for

ratio problem (i.e., Dinkelbach’s algorithm). The proposed algorithm solves a series

of minimum s-t cut problem in a series of slightly modified graphs. The algorithm

runs fast in practice and gives good segmentation on user input with errors. See

Fig.1.5d for an example of the proposed robust interactive segmentation method.

1.5.3 Surface-object segmentation with multi-scale technique

Graph-search and graph-cut are combined to segment lung tumor in the poor-

quality Mega-Voltage Cone-Beam CT (MVCBCT) in [84]. Graph-cut is used to

segment the tumor, while the graph-search is used to segment the adjacent lung

boundary. Interactions between graph-cut and graph-search is added to ensure the

tumor segmentation never “leak” beyond the lung boundary. This interaction proves
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(a) original (b) no surface info (c) surface-object (d) surf-obj+multi-scale

Figure 1.6: Surface-object segmentation with multi-scale technique of lung tumor in

MVCBCT. Red contours in all images are drawn by human expert. Blue contours

are segmentation using corresponding methods.

to be useful for segmenting lung tumor robustly. Fig.1.6c segments two interacting

lung boundaries simultaneously with tumor, which avoids the heavy leakage of tumor

segmentation without using such surface information (Fig.1.6b, red contour is by

human expert).

Most of current segmentation only uses small neighborhood in images, such

as 4-neighborhood for 2D images and 6-neighborhood for 3D images. In [21], Cour

et al. shows that the larger the neighborhood is in the normalized cut [79], the more

accurate the segmentation is. To prove this point, they build affinity matrices at

different scales and enforce cross-scale constraints that encourage the segmentation

at coarse scale to agree with the segmentation at finer scale. The segmentation is

improved even though they only used a naive down-sampling on a regular grid to

implement the multi-scale idea.

Kim et al. [44] uses a data-driven method to define multiple over-segmentation

of the image. All segments of the over-segmentation are interacting with each other,

which encourages large-scale information propagation. The pixel-wise segmentation
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is encouraged to agree with the labeling of the over-segmentation regions. The prob-

lem is reduced to an inversion of a large matrix, which is solved by computing a

random walk with restart. For 3D images, the matrix size is prohibitively large to

be inverted. And the completely-connected graph among all regions in the segmen-

tation also makes the running time increases quickly with the number of regions in

the over-segmentation.

We propose a novel multi-scale method incorporating information from an

over-segmentation of the original image. Although the formulation is similar to [44],

the problem is reduced to a binary labeling problem in the proposed method, instead

of a continuous generative model estimation problem. The resulting binary labeling

problem can be efficiently and exactly optimized by computing a single minimum

s-t cut in an appropriately constructed graph. Moreover, the completely-connected

graph consisting of all segments in the over-segmentation is replaced with a graph

using neighborhood of fixed radius. The proposed multi-scale technique exploits the

larger neighborhood among the segments in the over-segmentation, and the parent-

children relationship between one segment and all pixels within it.

The proposed method is applied to the lung tumor segmentation in MVCBCT.

Fig.1.7 describes the workflow incorporating both the multi-scale technique and the

surface-object interaction prior. Experiment shows that the proposed multi-scale

technique boosts the segmentation accuracy on top of the surface-object segmentation

technique. Fig.1.6d shows an example of the multi-scale surface-object segmentation.

Compared to Fig.1.6c, which does not use the multi-scale technique, the segmentation



www.manaraa.com

19

1SG

over-segmentation

surface-object 
interaction prior

input image output segmentation
(object + surfaces)2SG

2PSA
1PSA

PG

RG

PRA

Figure 1.7: Workflow of the multi-scale segmentation with surface-object interaction

prior. Surface-object interaction prior is encoded in the resulting graph. Region-wise

information from an over-segmentation of the original image is also incorporated. The

target object and the interacting surfaces are segmented simultaneously.

is further improved.

1.5.4 4DCT-PET co-segmentation

A PET-CT co-segmentation technique is proposed by Song et al. in [83] to

segment tumor volumes in PET-CT scan pairs. Two graph-cut based graphs are

constructed for PET and CT respectively to segment two tumor volumes in PET and

CT, respectively. Interaction priors between PET and CT are enforced to encourage

two segmented volumes agree with each other.

We extend the co-segmentation method to segment 4DCT-PET pairs, which

typically involves 10 different CT scans showing different breathing phases of the same

patient, and one PET scan. Interaction priors are introduced between PET scan and

each CT scan in different phases to encourage the segmentation to agree with each

other. Fig.1.8 shows one example.
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(a) CT (b) PET (c) expert (d) CT-only (e) co-seg

Figure 1.8: Illustrative results of one phase in 4DCT-PET co-segmentation. Note the

guidance of PET prevents the segmentation from leaking into the adjacent normal

tissues.

(a) intensity context (b) co-seg CT (c) location-intensity (d) co-seg CT

Figure 1.9: Incorporating location context into the traditional intensity context leads

to more accurage segmentation. The left bottom corner of the tumor is incorrectly

segmented as background given no locational information (b). With the help of

location context, the co-segmentation correctly finds the whole tumor volume (d).

1.5.5 Incorporating location context into co-segmentation

Co-segmentation allows different segmentations of tumor volume in CT and

PET images. The difference is modulated by a context term. One key desirable

property is to have the metabolical PET information anchor the tumor segmentation

in both PET and CT roughly around the highly active region indicating tumor. At

the same time, flexibilty should still be be allowed around tumor boundary because

of different characteristics of CT and PET images, and potential registration error.

However, most current co-segmentation [83, 11] only uses intensity difference
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(a) radial sam-
pling
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(b) “unwrap” output
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(c) star-shape
(d) digital ray

Figure 1.10: To segment circular or tubular structure, classical graph-search usually

requires “unwrapping” from the Cartesian coordinate system (a) to a polar coordinate

system (b). (c) shows a star-shaped object example. (d) shows a consistent digital

ray system, which is used to enforce a star-shape prior and avoid resampling in the

“unwrapping” procedure.

between CT and PET region cost to compute the context term, omitting the valuable

locational prior. We propose a truncated quadratic function to model the location

prior based on the distance to the highly metabolically active PET regions. Combined

with the traditional intensity based context, the proposed inter-modality context term

leads to more accurate co-segmentation, as shown in Fig.1.9.

1.5.6 Segmentation with star-shape prior

While the column structure enforced in the graph-search enables enforcement

of the useful smoothness and surface distance constraints, it also restricts the topol-

ogy of target surface to be terrain-like. For objects with other shapes, such as circular

surface, an “unwrapping” procedure usually needs to be taken. The “unwrapping”

procedure starts with a circle center, then resamples the image along the radial di-

rection. This resampling is repeated for different angles (for example, 360 different

angles), resulting in a terrain-like surface (see Fig.1.10a and 1.10b). The graph-search
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is conducted in the resampled space and then transformed back to the original image

space.

However, the sampling density is not uniform for the “unwrapping” proce-

dure. The segmentation accuracy at under-sampled outer regions may be limited

by the low sampling density. While the overly-sampled inner regions may have inter-

secting graph-search columns and suffer from column-intersection/mesh-folding prob-

lems [109, 67, 64, 42].

A novel segmentation method enforcing a star-shaped prior is introduced to

eliminate the “unwrapping” procedure. A star-shaped object is an object for which

there exists a star center point c such that for every other point p in the object,

the line segment cp lies completely within the object. See Fig.1.10c for an example

of star-shaped object. A discrete resampling tree rooted at the star center can be

efficiently constructed with nice geometrical properties by using consistent digital ray

method [19]. Every digital line segment connecting the image boundary pixel and the

star center pixel is equivalent to a column in the graph-search (Fig.1.10d). However,

unlike traditional graph-search, different columns can be merged as they approach the

star center. Fortunately, we will show that this difference will not pose difficulty for

us to enforce the smoothness constraint and min/max surface distance constraints as

in traditional graph-search. Thus, given the star center pixel location, we can conduct

graph-search on the consistent digital ray tree in the original image space, with all

the powerful constraints provided by graph-search.
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(a) pre-seg mesh (b) pre-segmentation (c) resample from mesh (d) GVF shape prior

Figure 1.11: When “unwrapping” is not possible, classical graph-search builds graph

based on triangulated mesh of an initial pre-segmentation. (a) shows a triangulated

mesh on a pre-segmentation of prostate and bladder in CT. (c) demonstrates the

resampling along columns at mesh vertices. Red grids are pre-segmentation result

(b); green line is triangulated mesh; blue columns are columns for graph-search.

Note the blue columns may intersect at high curvature regions, which is undesirable.

Gradient vector flow shape prior shown in (d) can be used to enforce shape prior

directly in original voxel grid space.

1.5.7 Segmentation with GVF shape prior

Although star-shaped prior is flexible to handle much shape variation, it’s not

easy, or sometimes impossible, to identify the star center in 3D images. In some

situations, it’s more convenient to provide a pre-segmentation as a shape prior for

graph-search based segmentation [109, 87, 86]. A pre-segmentation is a rough seg-

mentation of the target object which provides rough shape and location information,

but not accurate boundary location information.

A traditional graph-search based method will build triangulated mesh on the

pre-segmentation surface, grow columns on the vertices of the triangles on the mesh,

and resample the image along these columns. The graph-search segmentation is

conducted in the resampled column space, and the segmentation result has to be

converted back to the original image space. Similar uneven resampling problems
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exist for this mesh-based graph-search method as the “unwrapping”-based method.

Various techniques have been proposed to handle this problem [81, 86, 64, 109].

A novel gradient vector flow (GVF) shape prior is proposed to encode the

pre-segmentation shape information directly in the voxel grid space. This eliminates

the need to build mesh and resample the image. Working directly in the voxel space

also enable straightforward incorporation of a multi-object simultaneous segmenta-

tion framework which works not only for nesting surfaces, but also for excluding

surfaces. In Sec.8, two applications showing nesting and excluding surfaces are used

to demonstrate the proposed GVF shape prior segmentation method.

1.6 Contribution

The contribution of this proposal is the formulation of a series of applications

as labeling problem with different prior informations. All proposed formulations can

be efficiently and exactly minimized. This enables the problems to be effectively

solved in practice.

Now we summarize the proposed works from the point view of labeling prob-

lems with different prior informations, and give pointers to more detailed description

of the proposed works. The problem of labeling with ordering constraints is a multi-

labeling problem with geometric location ordering constraints of the labeled regions

(Chapter.2). The robust interactive segmentation is a binary labeling problem which

removes the hard seed constraints from graph-cut. This makes the interactive seg-

mentation more robust to human interaction error (Chapter.3). The surface-object
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segmentation with multi-scale technique combines a multi-labeling problem (graph-

search for surface segmentation), a binary labeling problem (pixel-wise graph-cut

for object), and a second binary labeling problem (region/segment-wise graph-cut

for object over-segmentation). This combination boosts the segmentation accuracy

by segmenting an auxiliary interaction surface and allowing larger interacting neigh-

borhood in the object segmentation (Chapter.4). The 4DCT-PET co-segmentation

combines multiple binary labeling problem (one binary labeling for tumor volume in

each CT scan in different phase and PET scan) to achieve accurate segmentation in

multiple CT phases (Chapter.5). Star-shape prior and GVF shape prior simplifies

a multi-labeling problem (graph-search) in the resampled image space to a binary

labeling problem in the original image space with the help of consistent digital ray

given star center pixel (star-shape prior, Chapter.7), and the gradient vector flow of

pre-segmentation (GVF shape prior, Chapter.8).
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CHAPTER 2
LABELING WITH ORDERING CONSTRAINTS BY FAST DYNAMIC

PROGRAMMING

Many computer vision applications can be formulated as labeling problems.

However, multilabeling problems are usually very challenging to solve, especially when

some ordering constraints are enforced. We solve a five-parts labeling problem pro-

posed in [57, 56]. In this model, one wants to find an optimal labeling for an image

with five possible parts: “left”, “right”, “top”, “bottom” and “center”. The geomet-

ric ordering constraints can be read naturally from the names. No previous method

can solve the problem with globally optimal solutions in a linear space complexity.

We propose an efficient dynamic programming based algorithm which guarantees the

global optimal labeling for the five-parts model. The time complexity is O(N1.5)

and the space complexity is O(N), with N being the number of pixels in the im-

age. In practice, it runs faster than previous methods. Moreover, it works for both

4-neighborhood and 8-neighborhood settings, and can be easily parallelized for GPU.

2.1 Introduction

Given an image, the multilabeling problem seeks to assign a label to each pixel

from a set of fixed labels, which, in general, is NP-hard [16]. Multilabel oprimization

is a very active area of research in computer vision since a wide variety of vision

problems can be formulated as multilabeling problems. Ishikawa developed an exact

optimization method for Markov Random Fields with convex priors [39], which was
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Figure 2.1: The five-parts labeling model. (a) The partition of the image into nine

regions. The letter in the parenthesis indicates the label of each region. (b) An

example labeling. Although the person in the hall way occludes significant area of

the image, our method can correctly label the end of the hallway.

among the first computational frameworks for efficiently solving the multilabeling

problems. Wu and Chen’s algorithm for convex multilabeling works in a more general

setting, restricting the label transition between two neighboring pixels in a certain

range of the linearly ordered labels [105]. For more general cost functions, Boykovet

al.’s α-expansion based graph cut approach [16] is widely used in the vision community

due to its accuracy and efficiency. However, this method provides no optimality

guarantees in some cases, including the cases studied in this work.

Recently, the introduction of label ordering constraints into the multilabel op-

timization, which allows substantially generalized cost functions, attracts noticeable

attention [30, 57, 56, 88]. In [57], Liu et al. proposed a five-parts labeling model with

the ordering constraints, in which the image is to be labeled into five parts, namely,

“left”, “right”, “top”, “bottom” and “center”, as shown in Fig. 2.1. The geometric

ordering constraints can be read from the names: (1) a pixel labeled as “left” cannot

be to the right of a pixel with any other label; (2) a pixel labeled as “right” cannot be



www.manaraa.com

28

the left of a pixel with any other label; (3) a pixel labeled as “top” cannot be below

a pixel with any other label; (4) a pixel labeled as “bottom” cannot be above a pixel

with any other label; and (5) if a pixel p labeled as “center” has a neighbor with a

different label, then the neighbor pixel has to be labeled as “left”, “right”, “top”, or

“bottom” if it is to the left, right, above, or below p, respectively. The last constraint

indicates that the “center ” region is a rectangle. Note that not all parts have to be

present.

To solve this five-parts labeling problem, Liu et al. [57] proposed the ordering

preserving moves for the graph cut optimization, which was demonstrated more ef-

fective than the α-expansion method [16]. However, their method does not guarantee

to find the globally optimal solution.

Our main technical contribution is a dynamic programming algorithm for com-

puting a globally optimal five-parts labeling of an N = n× n image in O(N1.5) time.

This algorithm runs quite fast in practice, taking just seconds to compute an optimal

labeling for a rather large images. In addition, our algorithm takes only a linear O(N)

memory space.

The key idea for solving the five-parts labeling problem in our algorithm is

to guess the possible “center” rectangles, and then for each rectangle, compute an

optimal two-labeling for each of those four conner regions incident to the rectangle

(Fig. 2.1a) by finding a shortest path. Note that there are O(N2) possible rectangles,

and thus a straightforward algorithm, with an efficient O(N) shortest path algorithm

called for each possible rectangle, would take O(N3) time, which is too slow for
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practical use. Fortunately, by judiciously characterizing the intrinsic structure of the

problem, we are able to improve the running time by a factor of O(N1.5).

We evaluate our algorithm on the geometric class scene labeling problem [37],

where the goal is to assign each pixel a rough geometric label, such as “sky”, “ground”,

“surface above ground”, etc. Experiment shows our algorithm runs faster and more

robustly on average than the order-preserving moves method [56]. The standard de-

viation of the execution times over hundreds of test images with the same size is

almost 0 for our method, while it is comparable to the mean execution time for the

order-preserving moves method. By intentionally adding Gaussian noise, we observe

little effect on the execution time of our algorithm, while a big deterioration is ob-

served for the order-preserving moves method. The average labeling accuracy of the

two methods is highly comparable over all the test datasets, though we do find some

image datasets, for which our algorithm obtains clearly superior labeling.

Related Work. Felzenszwalb and Veksler recently proposed a tiered scene

model which is more general than the five-parts model [30]. In this model, the image is

first divided by two horizontal curves into the top, middle and bottom regions, and the

middle region is further subdivided vertically into subregions. They give a dynamic

programming based algorithm which runs inO(N1.5K) time for a Potts-like model and

in O(N1.5K2) time for more general models, in which N is the size of the image, and K

is the number of possible labels in the middle region. However, the space complexity

of the algorithm is O(N1.5), which could be problematic in practical use for a large

image. For example, for an 500×500 image, an O(N1.5) memory algorithm will require
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hundreds of times more memory than an O(N) memory algorithm. In addition,

only the 4-connected neighborhood setting case is presented in [30]. Another closely

related work is Strekalovskiy and Cremers’ multilabeling framework with generalized

ordering constraints based on spatially continuous optimization [88]. This framework

includes both the five-parts model and the tiered scene model as special cases, and can

deal with even more complex ordering constraints. However, this algorithm does not

guarantee global optimality and does not run fast enough in practice. The execution

time reported in [88] is 90 seconds for solving the five-parts labeling problem on a

640×480 image using CUDA parallel implementation; while our algorithm takes only

about 17 seconds with no parallel implementation.

2.2 Model

Given an image I with a set P of N = n× n pixels and a set L of labels, the

pixel labeling problem seeks a labeling f that assigns a label fp ∈ L to each pixel

p ∈ P , such that the energy function of the following form is minimized.

E(f) = λ
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, fq) (2.1)

In Eq. (2.1), N is a neighboring system defined on P . A 4-connected neigh-

borhood setting is assumed for the following sections. But our approach can be easily

extended to 8-connected neighborhood. Dp(fp) is the data term, which reversely mea-

sures the likelihood of assigning label fp to the pixel p. Vpq(fp, fq) is the smoothness

term, which is the penalty we pay for assigning labels fp and fq to neighboring pixels
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Table 2.1: Ordering constraints penalty table.

Vertical Neighbors

p = (x, y), q = (x, y + 1)

fp\fq L R C T B

L 0 ∞ ∞ ∞ wpq

R ∞ 0 ∞ ∞ wpq

C ∞ ∞ 0 ∞ wpq

T wpq wpq wpq 0 ∞
B ∞ ∞ ∞ ∞ 0

Horizontal Neighbors

p = (x, y), q = (x+ 1, y)

fp\fq L R C T B

L 0 ∞ wpq wpq wpq

R ∞ 0 ∞ ∞ ∞
C ∞ wpq 0 ∞ ∞
T ∞ wpq ∞ 0 ∞
B ∞ wpq ∞ ∞ 0

p and q, respectively.

Due to the intractability of the general labeling problem, most of previous

work assumes Vpq is of a particular form (e.g, convex or metric). Here in the five-parts

labeling problem, we make no assumptions on either Dp or Vpq. Instead we consider

the problem of minimizing E(f) over a restricted class of labelings. Specifically, Dp

and Vpq can be arbitrary.

The label set L includes five labels, ′L′, ′R′, ′C ′, ′T ′, ′B′, which represent

“left”, “right”, “center”, “top” and “bottom”, respectively. This model enforces the

ordering constraints by letting Vpq(fp, fq) =∞ if fp and fq are not allowed. Because

we’re minimizing the energy, such labeling will not be feasible in a minimized energy.

For example, we set V(x,y)(x,y+1)(
′B′,′C ′) = ∞ to prevent a pixel (x, y) labeled as

“bottom” from appearing above a pixel (x, y+1) labeled as “center”. If fp = fq, then

Vpq(fp, fq) = 0. Finally, if fp and fq satisfy the ordering constraints, Vpq(fp, fq) =

wpq > 0.

The complete set of ordering constraints is described in Table.2.1. An example



www.manaraa.com

32

labeling satisfying the 5 label ordering constraint model is presented in Fig. 2.1a.

2.3 Method

This section presents our O(N1.5) time algorithm for solving the five-parts

labeling problem by dynamic programming.

A key observation for our algorithm is as follows. For a fixed center rectangle

M , one can extend the four sides of M to divide the image I into nine regions, denoted

by NW,N,NE,W,M,E, SW, S, SE, as shown in Figure 2.1(a). Due to the ordering

constraints, the label for each of the regions N, W, M, E, and S is determined, and

each of the four corner regions NW, NE, SW, and SE is labeled with at most two

different labels, more precisely, regions NW, NE, SW, and SE are labeled with ‘L’

and ‘T’, ‘T’ and ‘R’, ‘L’ and ‘B’, and ‘B’ and ‘R’, respectively. Clearly, the energy

on each of the regions N, W, M, E, and S is well defined if the center rectangle M is

fixed. Thus, the problem is reduced to computing an optimal two-labeling for each

of those corner regions. We further observe that, in each of those corner regions, the

boundary between the two labeled parts forms a monotone path with respect to both

horizontal and vertical directions (Fig. 2.1(a)). Our main idea is to optimally solve the

two-labeling problem for each corner region by computing a shortest monotone path,

which takes O(N) time. Note that there are O(N2) possible center rectangles in total.

It thus takes O(N3) time for solving the five-parts labeling problem. Interestingly,

we are able to batch the computation of all O(N) shortest paths in O(N) time.

Hence, the running time of our algorithm can be reduced to O(N2). Furthermore, by
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judiciously exploring the intrinsic structure of the problem, we can further improve

the running time to O(N1.5).

Sections 2.3.1 and 2.3.2 show that after O(N) time preprocessing, the mini-

mum energy of the five-parts labeling can be computed in O(1) time for each possible

center rectangle, and the speedup of the algorithm is presented in Section 2.3.3.

2.3.1 Computing energy for non-corner regions

Given a center rectangle M specified by its two diagonal corner points, (x1, y1)

and (x2, y2) with x1 ≤ x2, y1 ≤ y2, we show that the energy for each of the regions N,

W, M, E and S, can be computed in O(1) time after O(N) time of preprocessing.

The idea is to first pre-compute the integral data cost image [98] Cldata(x, y)

of each label l ∈ L for the data term of the energy function, with Cldata(x, y) =∑
1≤i≤x,1≤j≤yDp(i,j)(fp = l). Note that Cldata(·, ·) can be computed in O(N) time.

Then we compute the integral row-smoothness cost C(T,C)
row sm(x, y) =

∑
1≤i≤x Vp(i,y),q(i,y−1)(fp =

C, fq = T ) for the label transition from ‘T’ on Row y− 1 to ‘C’ on Row y. Similarly,

we can compute C(C,B)
row sm(x, y) for the label transition from ‘C’ to ‘B’. In addition, we

define the integral column-smoothness cost C(L,C)
col sm(x, y) =

∑
1≤j≤y Vp(x−1,j),q(x,j)(fp =

L, fq = C) for the label transition from ‘L’ on Column x − 1 to ‘C’ on Column x.

Similarly, C(C,R)
col sm(x, y) can be computed. Note that all these tables can be computed

in O(N) time. Now we can compute the energy for each of the regions N, W, M, E
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and S in O(1) time, as follows.

EN = CTdata(x2, y1 − 1)− CTdata(x1 − 1, y1 − 1); (2.2)

EW = CLdata(x1 − 1, y2)− CLdata(x1 − 1, y1 − 1); (2.3)

EE = CRdata(n, y2)− CRdata(x2, y2)− CRdata(n, y1 − 1) + CRdata(x2, y1 − 1); (2.4)

ES = CBdata(x2, n)− CBdata(x1 − 1, n)− CBdata(x2, y2) + CBdata(x1 − 1, y2); (2.5)

EM = CCdata(x2, y2)− CCdata(x1 − 1, y2)− CCdata(x2, y1 − 1) + CCdata(x1 − 1, y1 − 1)

+C(T,C)
row sm(x2, y1)− C(T,C)

row sm(x1 − 1, y1) + C(C,B)
row sm(x2, y2)− C(C,B)

row sm(x1 − 1, y2)

+C(L,C)
col sm(x1, y2)− C(L,C)

col sm(x1, y1 − 1) + C(C,R)
col sm(x2, y2)− C(C,R)

col sm(x2, y1 − 1)(2.6)

2.3.2 Computing min energy for corner regions

For each of the corner regions NW, NE, SW and SE (Fig. 2.1(a)), we essentially

need to solve an optimal 2-labeling problem given a fixed center rectangle M. The idea

is to compute a shortest monotone path which completely separates the two parts

with different labels. Now we illustrate on the corner region NW that after O(N)

preprocessing, given a fixed center rectangle M, each of those 2-labeling problem can

be solved in O(1) time.

Assume the lower-right corner of the NW region is (x0, y0). We construct the

following directed acyclic graph (DAG) G(x0,y0) to compute a shortest path minimizing

the energy function ENW (x0, y0). The node set consists of two dummy nodes, a source

s and a sink t, and N pixel nodes v(x,y) with each corresponding to exactly one pixel

I(x, y) in the image I.
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Figure 2.2: (a) Graph construction for solving the 2-labeling problem on Region NW.

The horizontal edge (green) incorporates the data term of part of the current column

(green block). The vertical edge (red) incorporates the data term of part of the current

row (red block). (b) Distribution of the smoothness penalties to the edges. The dotted

double-arrows represent the smoothness penalties between two pixels with different

labels. The dotted single-arrows shows how the smoothness penalties are assigned to

the edges. The smoothness penalties indicated by the red (green) double-arrows are

distributed to the red (green) edges.
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Now we define directed edges in G(x0,y0). Note that the boundary between the

L-part (whose pixels are labeled as “left”) and the T-part (whose pixels are labeled

as “top”) of the NW region is monotone to both horizontal and vertical directions.

Thus, for every node v(x,y) with 1 ≤ x ≤ x0 and 1 ≤ y < y0, one vertical edge to

v(x,y+1) is introduced. For every node v(x,y) with 1 ≤ x < x0 and 1 < y ≤ y0, one

horizontal edge to v(x+1,y) is introduced. We define the boundary path in G(x0,y0) as a

path whose nodes corresponding to the upper envelop of an L-part of the NW region.

We further notice that a boundary path could start from any node in the first row or

first column, and may end at any node in the last row. Hence, we add one directed

edge from s to every node in the first row and the first column, and a directed edge

from each node in the last row to the sink t (Fig. 2.2(a)).

We assign edge costs to encode the energy function in G(x0,y0). For notation

convenience, denote by rPreSum(L;x, y) =
∑

1≤i≤xDp(i,y)(fp = L) the total sum

of the data cost of the first x pixels of Row y, which are labeled as “left”; and by

cPreSum(T ;x, y) =
∑

1≤j≤yDp(x,j)(fp = T ) the total sum of the data cost of the first

y pixels of Column x, which are labeled as “top”.

For any two vertically neighboring pixels p(x, y) and r(x, y + 1), (1 ≤ x ≤

n, 1 ≤ y < n), there is a downward edge from p to r. If both vp and vr are on the

boundary path (i.e. p and r are labeled as “left”), then pixel q(x + 1, y) is labeled

as “top”. Hence, a smoothness penalty Vpq(fp = L, fq = T ) needs to be enforced.

In addition, all pixels from the leftmost pixel of Row y + 1 to pixel r are labeled as
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“left”. We thus assign a cost ce(vp, vr) to the edge e(vp, vr), with

ce(vp, vr) = Vpq(fp = L, fq = T ) + rPreSum(L;x, y + 1) (2.7)

Specifically, the edge from s to each node in the first row vr(x, 1) can be treated as a

special case of vertical edges, with cost:

ce(s, vr(x,1)) = rPreSum(L;x, 1) (2.8)

For any two horizontal neighbor pixels p(x, y) and r(x+ 1, y), there is a right-

ward edge from p to r. If both vp and vr are on the boundary path (i.e. p and r are

labeled as “left”), then pixel q(x+ 1, y− 1) is labeled as “top”. Hence, a smoothness

penalty Vrq(fr = L, fq = T ) needs to be enforced. In addition, all pixels in Column y

starting from the topmost pixel to pixel q are labeled as “top”, and pixel r is labeled

as “left”. Thus the cost of edge e(vp, vr) is

ce(vp, vr) =Vqr(fq = T, fr = L) +Dr(fr = L) + cPreSum(T ;x+ 1, y − 1) (2.9)

Specifically, the edge from s to each node in the first column vr(1,y) can be treated as

a special case of horizontal edges, with cost:

ce(s, vr(1,y)) =Vq(1,y−1),r(fq = T, fr = L) +Dr(fr = L) + cPreSum(T ; 1, y − 1)

(2.10)

Finally, we need to set the costs for the edges connected to the sink t. For a
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pixel p(x, y0) in the last row of the NW region, if vp is the last node on a boundary

path, then p is labeled as “left”, and each pixel q(i, y0) right after p in the same row

(i.e. x < i ≤ x0) is labeled as “top”. However, the pixel r(i, y0 +1) immediately below

q(i, y0) is labeled as “left”, as r is in Region W. Thus, we assign a cost ce(vp, t) to the

edge e(vp, t) to enforce the smoothness penalty for those label changes. In addition,

the data cost for those columns after Column x also need to be enforced. Hence, we

have

ce(vp, t) =Vp,q(x+1,y0)(fp = L, fq = T )

+
∑

x<i≤x0

Vq(i,y0),r(i,y0+1)(fq = T, fr = L) (2.11)

+ CTdata(x0, y0)− CTdata(x, y0)

This completes the construction ofG(x0,y0) for computing ENW (x0, y0). A short-

est s-to-t path can be computed in O(N) time using topological ordering of this DAG,

which specifies an optimal 2-labeling for the region NW. However, this is far from

good enough to achieve our goal to compute ENW (x0, y0) in O(1) time after an O(N)

preprocessing.

Observe that for x0 ≤ x′0 and y0 ≤ y′0, the induced graph of G(x0,y0) after

removing its sink is a subgraph of the induced graph of G(x′0,y
′
0) after removing the

sink. Thus we can compute all ENW (x0, y0) for 1 ≤ x0 ≤ n and 1 ≤ y0 ≤ n, as follows.

First, construct the graph G(n,n), and compute a shortest path tree from the source

s in O(N) time. Then, for each node v(x0,y0), we introduce the sink t(x0, y0) and
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its incident edges, as we do for the construction of G(x0,y0). Thus, it take additional

O(N0.5) time to find a shortest path from s to t(x0, y0) from the computed shortest

path tree, rather than from scratch. In this way, it takes O(N1.5) time to compute

all ENW (x0, y0) for 1 ≤ x0 ≤ n and 1 ≤ y0 ≤ n.

Interestingly, we can further improve our algorithm. Consider all ENW (x, y0)

(for 1 ≤ x ≤ n) in the same Row y0. Define the ending point of ENW (x, y0) as the last

node that is on the shortest path from s to the sink t(x, y0). We have the following

lemma.

Lemma 2.1. If the ending point of ENW (x, y0) is v(x′,y0) (x′ ≤ x), then the ending

point of ENW (x+ 1, y0) is either v(x′,y0) or v(x+1,y0).

The proof of the lemma is in the Supplementary Material. Based on Lemma 2.1,

we can compute all ENW (x, y0), (1 ≤ x ≤ n) for Row y0 in O(N0.5) time from the

computed shortest path tree. Hence, all ENW (x, y) for 1 ≤ x ≤ n and 1 ≤ y ≤ n can

be computed in O(N)time. Similarly, one can compute the table ENE(·, ·), ESW (·, ·)

and ESE(·, ·) in O(N) time.

At this point, given a center rectangle M specified by its two diagonal cor-

ner points, (x1, y1) and (x2, y2), we can compute an optimal five-parts labeling with

minimized energy Ef (x1, y1;x2, y2) in O(1) after an O(N) preprocessing. That is,

Ef (x1, y1;x2, y2) =
∑

g∈{N,W,M,E,S} Eg + ENW (x1 − 1, y1 − 1) + ENE(x2 + 1, y1 − 1)

+ESW (x1 − 1, y2 + 1) + ESE(x2 + 1, y2 + 1) (2.12)
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Since there are O(N2) possible center rectangles, we are able to optimally solve

the five-parts labeling problem in O(N2) time. During the preprocessing, we only

need to compute O(1) tables each with a size of O(N). Thus, the space complexity

is O(N).

2.3.3 Speedup from o(N2) to o(N1.5)

The key idea of the speedup is: given two rows y1 and y2, y1 ≤ y2 , we return

the best possible solution with its upper leftmost corner resides in Row y1 and its

lower rightmost corner resides in Row y2, in O(N0.5) time. In another word, find

minx1,x2 Ef (x1, y1, x2, y2) in O(N0.5) time.

Applying Eqn. (2.12) results in Ef (x1+1, y1, x2, y2)−Ef (x1, y1, x2, y2) = H(x1, y1; y2).

Note H(x1, y1; y2) is independent of x2. This property of H(·, ·; ·) is crucial to the

speedup (proof can be found in supplementary materials). According to definition of

H(·, ·; ·), we have Ef (x1, y1, x2, y2) = Ef (1, y1, x2, y2) +
∑x1−1

i=1 H(i, y1; y2). As a result,

argx2
min
x2≥x1

Ef (x1, y1, x2, y2) = argx2
min
x2≥x1

Ef (1, y1, x2, y2) (2.13)

for fixed y1, y2. In another word, we only need to compute min Ef (1, y1, ·, y2) for

x1 = 1, and it could be used to compute minx2≥x1 Ef (x1, y1, ·, y2) for x1 6= 1. Define

the following running min and running sum:

rMin(y1,y2)(x) = min
i≥x
Ef (1, y1, i, y2) (2.14)

hMin(y1,y2)(x) =
x−1∑
i=1

H(i, y1; y2) (2.15)
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For fixed y1 and y2, rMin(y1,y2)(·) and hMin(y1,y2)(·) can be computed within O(N0.5)

time. Let x∗2 be the optimal x2 that achieves optimal energy Ef (x1, y1, x
∗
2, y2) for fixed

x1, y1, y2, then

Ef (x1, y1, x
∗
2, y2) = rMin(y1,y2)(x1) + hMin(y1,y2)(x1) (2.16)

Note for fixed x1, y1, y2 this only takes constant time, given that rMin(y1,y2)(·) and

hMin(y1,y2)(·) have been computed.

This accomplish our goal of finding optimal solution for fixed Row y1 and y2

in O(N0.5) time. Directly repeating this process for all 1 ≤ y1 ≤ y2 ≤ n results in a

O(N1.5) algorithm. Note rMin(y1,y2) and hMin(y1,y2) does not need to be remembered

for different y1, y2, so memory consumption for them is just O(N0.5).

Theorem 2.2. Given an image of N = n × n pixels, the five-parts labeling problem

can be solved in O(N1.5) time and O(N) space.

Figure 2.3: Some labeling results. Top row: original images; second row: SVM

classifier results using data term only; last row: our results.
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2.4 Experiment–Geometric Class Labeling

We used 300 indoor images and 42 outdoor images, which are the same as the

test images used in [57]. All indoor images are 640*480. But outdoor images have

various sizes.

2.4.1 Cost images

We used the same data term costs as in [57]. First, the images are partitioned

into “superpixels”, which are homogeneous regions within each region and heteroge-

neous between different regions, using the algorithm by Felzenszwalb et al. [28]. Simi-

lar to Hoeim et al.’s method [37], an SVM classifier is then trained with a wide variety

of selected features, such like location, color, texture, geometry, and edges. Finally,

a probability for each “superpixel” to be assigned a label l ∈ L = {L,R, T,B,C} is

computed. All pixels within this “superpixel” are assigned a cost according to the

probability of the “superpixel” it belongs to. This completes the data term genera-

tion.

The smoothness term is generated simply using Sobel operator along the hor-

izontal and vertical directions.

2.4.2 Results

Example results are shown in Fig. 2.3.

Define the accuracy rate as the ratio of the number of correctly labeled pixels

over the total number of pixels. The performance on the accuracy of our algorithm

and the order-preserving moves method is shown in Table.2.2.
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Figure 2.4: Example images on which our algorithm output quite different labeling

results from the order-preserving moves. First row: original image; second row: SVM

classifier results, i.e. results using only data term; third row: results by OPM; fourth

row: results by our algorithm.

Table 2.2: Average accuracy rate (%).

Image sets OPM Our alg.

Indoor images 84.9 ± 14.9 85.1 ± 14.5

Outdoor images 85.7 ± 7.0 85.7 ± 6.9
OPM: the order-preserving moves method.
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Our algorithm does not show significant improvement in the accuracy rate.

The difference of minimized energy is 0.10% for indoor images and 0.16% for outdoor

images on average for both methods, although our method always obtained an energy

no worse than the order-preserving moves method. The marginal difference indicates

that the order-preserving moves works pretty well in practice.

Although for most of the test cases, there are little difference between the

order-preserving moves and our algorithm, we do observe significant difference on

some cases, as shown in Fig.2.4. Our algorithm captures the door in the image in

the first column (last row), and the rectangular space between the door and the

box in the second column. The cost image for the image in the third column is

poor, from which it is very difficult to distinguish the “left” region from the “center”

region. However, our algorithm still can produce a reasonable labeling, while the

order-preserving moves is trapped into a local minima with a long execution time of

244.18 seconds.

Table.2.3 shows the average execution time of the order-preserving moves and

our algorithm. Our algorithm outperforms the order-preserving moves significantly

while guaranteeing the global optimality. Note that our execution time is much

better than that (90s) reported in [88] by Strekalovskiy and Cremers despite their use

of CUDA for parallel implementation.

The execution time reported in [30], for tiered scene labeling, is 9.4 seconds

on images approximately 300× 250; while the execution time of our algorithm is 2.2

seconds on 320 × 240 images. Note the O(N1.5) memory consumption of [30] might
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Table 2.3: Average execution time (s).

Image sets OPM Our alg.

Indoor images 26.6±22.6 17.1±0.1

27 outdoor images with

size of 640× 480 20.6±12.5 16.4± 0.3

Overall outdoor images∗ 20.2 14.1
∗: The sizes of overall outdoor images vary. Thus,
no standard deviations are reported.

Table 2.4: Average execution time comparison (s).

Methods No noise σ = 0.17 σ = 0.29 σ = 0.58

OPM 20.2 43.8 40.4 81.4

Our alg. 14.1 14.7 14.5 15.0

make it problematic to process large images, which is overcome by our algorithm. In

addition, our algorithm can be easily parallelized for GPU, which may bring more

significant speedups. This will be discussed in Sec. 2.5

Moreover, the running time of our method only depends on the image size.

The standard deviation of the execution times over hundreds of test images with the

same size is almost 0 for our method, while it is comparable to the mean execution

time for the order-preserving moves method, as in Table. 2.3. By intentionally adding

Gaussian noise to cost images, we observe little effect on the execution time of our al-

gorithm, while a big deterioration is observed for the order-preserving moves method,

as shown in Table 2.4 and Table 2.5. The mean value of the Gaussian noise is 0 and

σ is normalized with respect to the maximum intensity value of the cost image.
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Table 2.5: Max execution time comparison (s).

Methods No noise σ = 0.17 σ = 0.29 σ = 0.58

OPM 136.4 396.4 267.7 1408.8

Our alg. 33.8 35.2 35.2 41.1

(a) Data term C (b) Data term L (c) Data term R (d) Data term T

(e) Data term B (f) Local minima (g) Optimum

Figure 2.5: Illustrating the lack of global optimality for the order-preserving moves

method. All smoothness penalties are 0 in this example. The energy of the global

optimum is 0. While the energy of the local minima is a multiple of K. Note K can

be arbitrarily large, which will make the local minima arbitrarily far away from the

optimum.

2.5 Discussion

2.5.1 Global optimality

Global optimization is important for the labeling problems. Although the

order-preserving moves method works well for test image datasets we used, it may

get trapped in a local minima very far away from the global optimal solution, and

fail to find an acceptable solution.

Consider the given costs for each label shown in Fig. 2.5, and all smoothness
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penalties are set to be 0. Start from an initial labeling with all pixels labeled as

‘C’ [56]. A horizontal move results in a labeling of an energy of ∞ , since a vertical

strip across the whole image must be labeled as ‘C’ in this horizontal move. Hence,

only a vertical move is possible to return a finite energy by labeling the horizontal strip

in which all pixels have a cost of K for label ‘C’. Unfortunately, the order-preserving

moves method gets stuck here. Any further order-preserving move will results in ∞

energy.

However, the energy of the global optimal solution is 0. Note the value of

K could be arbitrarily large, which indicates that even this strong order-preserving

moves method gets trapped in a local minima arbitrarily far from the optimal solution.

2.5.2 Parallelization of the algorithm

The most time-consuming part of this algorithm is the optimal center rectangle

searching process. In a typical running on a 640×480 image, this process takes about

16 seconds, while the average total execution time for such an images is just about

17 seconds.

However, this process is highly parallelizable. We can view each row pair of

y1 and y2 as a unit for parallelization. As indicated in Sec. 2.5.1, the computations

between different y1, y2 row pairs are totally independent of each other. This makes

our algorithm straightforward to parallelize on multi-core CPUs and high-end GPUs.

There are O(N) different y1, y2 pairs in total. This number of threads should be able

to saturate the current high-end CPUs, which only have hundreds of cores.
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2.5.3 Extension to 8-connectivity

Our method can be easily extended to the 8-neighborhood setting. Note that

the algorithm in [30] is at least nontrivial to do the extension.

It introduces additional smoothness terms using the 8-connectivity. The smooth-

ness penalty between the center region and the other four non-corner regions is easy to

handle. We next show how to handle the smoothness penalty for the corner regions.

We again illustrate our idea on the NW region. In Fig. 2.6, the red and green

dotted double-arrows show the smoothness penalties on the diagonally neighboring

pixels we need to enforce into our shortest path model. We basically want to distribute

those penalties to the edges on the boundary path. Note that the smoothness penalties

indicated by the green double-arrows correspond one-by-one to the edges on the

boundary path as follows. For the downward edge from v(x,y) to v(x,y+1), we add an

additional cost of Vp(x,y+1),q(x+1,y)(fp = L, fq = T ) to the edge. While for the rightward

edge from v(x,y) to v(x+1,y), an additional cost of Vp(x+1,y),q(x+2,y−1)(fp = L, fq = T ) is

added to the edge.

Similarly, smoothness penalties indicated by the red double-arrows can be ac-

counted by adding following costs: for the downward edge from v(x,y) to v(x,y+1),

add Vp(x,y),q(x+1,y+1)(fp = L, fq = T ), and for the rightward edge from v(x,y) to

v(x+1,y), add Vp(x+1,y),q(x,y−1)(fp = L, fq = T ). The only problem is that the sum

of the two brown edges incident at (x̄, ȳ) in Fig. 2.6 overestimates by an amount

of Vp(x̄,ȳ−1),q(x̄+1,ȳ)(fp = L, fq = T ) + Vp(x̄+1,ȳ),q(x̄,ȳ−1)(fp = L, fq = T ). To solve

this problem, we introduce a diagonal edge e(v(x̄,ȳ−1), v(x̄+1,ȳ)), whose cost equals
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( , )x y

Figure 2.6: The green and red double-arrows indicate the additional smoothness

penalties we need to enforce when extended to the 8-connectivity.

ce(v(x̄,ȳ−1), v(x̄,ȳ))+ce(v(x̄,ȳ), v(x̄+1,ȳ))−Vp(x̄,ȳ−1),q(x̄+1,ȳ)(fp = L, fq = T )−Vp(x̄+1,ȳ),q(x̄,ȳ−1)(fp =

L, fq = T ). If we assume all smoothness penalties are nonnegative, then this edge is

always preferable than the “detour” of the two brown edges.

2.6 Conclusion

We present an algorithm optimally solving the five-parts labeling problem,

which, to the best of our knowledge, is the first algorithm that guarantees globally

optimal solution to that labeling problem with linear space complexity. The theoret-

ical running time is O(N1.5), with N being the number of pixels in the image. In

practice, it runs much faster than the method reported in [56]. Moreover, it can easily

be parallelized for GPU, and it is extensible to the 8-neighborhood setting without

affecting the theoretical running time.
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CHAPTER 3
ROBUST INTERACTIVE SEGMENTATION

Scribbles in scribble-based interactive segmentation such as graph-cut are usu-

ally assumed to be perfectly accurate, i.e., foreground scribble pixels will never be

segmented as background in the final segmentation. However, it can be hard to draw

perfectly accurate scribbles, especially on fine structures of the image or on mobile

touch-screen devices. We propose a novel ratio energy function that tolerates errors in

the user input while encouraging maximum use of the user input information. More

specifically, the ratio energy aims to minimize the graph-cut energy while maximizing

the user input respected in the segmentation. The ratio energy function can be ex-

actly optimized using an efficient iterated graph cut algorithm. The robustness of the

proposed method is validated on the GrabCut dataset using both synthetic scribbles

and manual scribbles. The experimental results show that the proposed algorithm is

robust to the errors in the user input and preserves the “anchoring” capability of the

user input.

3.1 Introduction

Image segmentation/object selection is widely used in image processing. While

fully-automatic segmentation methods can provide satisfactory result in some cases,

human interaction is needed to produce high quality segmentation in more challenging

images. Among various interactive approaches, two of the most popular ones are the

boundary-based segmentation[62] and the scribble-based segmentation[75, 89, 4, 54,
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55, 53]. The boundary-based interactive segmentation such as intelligent scissors [62]

requires the user to trace the whole boundary of the object, which is usually time-

consuming and tedious for users. Scribble-based interactive segmentation, on the

other hand, is based on a number of foreground and optionally background scribbles.

The algorithm will automatically label the pixels as either foreground or background

based on the information such as location, color, texture, etc. provided by the scrib-

bles.

Classical scribble-based interactive segmentation takes the scribbles as hard

constraints, i.e., all foreground and background scribbles are guaranteed to be fore-

ground and background, respectively, in the segmentation results. This requires the

scribbles to be highly accurate, otherwise the segmentation gets compromised. This

requirement can be hardly met on the mobile touch-screen devices, which has increas-

ingly found wide applications. Even on a big screen with a mouse, it is hard to draw

perfectly accurate scribbles on challenging images with fine structures, such as a thin

bush stem or legs of a table. The scribble-based approaches have been widely used

(a) scribbles (b) Subr’s [89] (c) graph-cut (d) proposed

Figure 3.1: The proposed method tolerates errors in user-specified scribbles and is

better at segmenting fine structures in an image.
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in image editing [4, 54] and image segmentation [13]. In the interactive image edit-

ing, users first specify sparse scribbles and the corresponding edits to be performed

on each scribble, such as tone, color and/or material changes. These edits are then

propagated to all the other pixels in the image with a modulated “editing strength”,

which can be seen as a certain soft segmentation.

An et. al. [4] formalizes the image editing problem as a quadratic optimiza-

tion problem based on the pixel affinity matrix in the pixel appearance space. The

affinity matrix is defined on all pairs of pixels. A low-rank stochastic approximation

is applied to obtain an approximate solution. This method does not build an explicit

appearance from the whole set of scribbles, instead it builds an implicit model by

propagating information between all pairs of pixels. This method relies on that in-

formation propagation among all pairs of pixels to tolerate user input errors. Li et.

al.[54] observed that the optimization formulation in An et. al.’s work [4] essentially

is a smooth function with a sparse set of constraints. Based on this observation, they

approximately decomposed the given editing strength on the scribble pixels into a

series of radial-based editing functions. The editing strength on all the other pixels

are then interpolated using these radial-based editing functions for their appearance

representation. This method runs extremely fast. However, the quality of the re-

sults highly depends on the representation capability of the series of radial-based

editing functions for the user’s intentions. In addition, both An et. al.’s and Li et.

al.’s methods only produce a continuous “editing strength” map, which reflects how

similar each pixel is to the foreground seed, instead of binary segmentation.
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Various methods have been proposed to alleviate the problem of user input

errors in the binary image segmentation. Liu et. al.’s method [55] allows the user to

override the erroneous scribbles by specifying new scribbles, which overlap partially

with the inaccurate old scribbles. The new scribbles are then enforced as new hard

constraints while the old scribbles are regarded as soft constraints for the segmenta-

tion. Clearly, this method still highly replies on the accuracy of the new scribbles.

Sener et. al. [75] developed an error-tolerant interactive segmentation method using

dynamic and iterated graph-cuts. Essentially, the method removes the inaccurate

scribble pixels from being used as seeds with some heuristics in the preprocessing

step. Subr et. al. [89] make use of a dense conditional random field (CRF) to infer

the segmentation from possibly inaccurate scribbles. The dense CRF model contains

a simple unary term and a fully connected CRF among all pairs of pixels in the image.

To solve the dense CRF, they embedded pixels in a low-dimensional Euclidean space

with a metric that approximates the desired high-dimensional affinity function.

We introduce a novel ratio-form energy function which consists of a graph-

cut energy term to utilize both region and boundary information from the input

image, and a user-scribble utility term to encourage the user scribbles to be respected.

Essentially, optimizing the ratio energy function is equivalent to minimizing the graph-

cut energy while at the same time respecting the user input as much as possible.

The user scribbles are enforced as a soft constraint instead of a hard constraint,

which allows the proposed method to tolerate user input errors. In contrast to the

methods which deal with user-input errors using heuristics such as Sener et. al.’s
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work [75], a global optimization framework is utilized to handle the user input errors.

Comparing to the fully connected CRF method [89], our method enjoys the sparsity of

the constructed graph from the neighborhood setting, as in the graph cut method [13].

Our experiments demonstrated that the energy function in the proposed method can

be optimized efficiently and can produce spatially coherent segmentations.

3.2 Methods

We formalize the segmentation problem as the optimization of a ratio energy

in which the numerator is the graph-cut energy and the denominator is a utility

function which increases as more user input is respected.

3.2.1 Energy formulation

The energy to minimize is

E(x) =
Egc(x)

M + U(x)
, (3.1)

in which x ∈ LP is the labeling of all the pixels P from a binary set of available

labelings L = {‘ob′, ‘bg′}.

Egc(x) is the graph-cut energy [13], which consists of a region term Dp(xp)

and a boundary term Vpq(xp, xq) (Eq.(3.2)). The region term measures how likely

each pixel p belongs to object (‘ob’) or background (‘bg’). Unlike classical graph-

cut [13] which assigns infinite region term weight to seed pixels to ensure them as

hard constraint, we assign region term weights to seed pixels just like any other non-

seed pixels. Thus no hard constraint is enforced in Eq.(3.2). The boundary term
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Vpq(xp, xq) penalizes the discontinuity between the object and background, that is,

Vpq(xp, xq) is the penalty of assigning labels xp and xq to two neighboring pixels p

and q according to the neighborhood setting N . We use 8-neighborhood setting in

this work. More precisely,

Egc(x) =
∑
p∈P

Dp(xp) + η
∑

(p,q)∈N

Vpq(xp, xq), (3.2)

where, η is a balancing constant between the region term and the boundary term.

Vpq = 0 if xp = xq, and Vpq > 0 if xp 6= xq.

U(x) is a nonnegative utility function which increases as more user input

information is respected in the segmentation result. Assume that SF and SB are

the sets of pixels included in the foreground and background scribbles, respectively.

Denote by db(xp) the distance between pixel p and the nearest scribble boundary.

Two user input utility functions that we use in this work are defined, as follows.

U1(xp) =



1 if p ∈ SF and xp = ‘ob′

1 if p ∈ SB and xp = ‘bg′

0 otherwise

(3.3)
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U2(xp) =



db(xp)
2 if p ∈ SF and xp = ‘ob′

db(xp)
2 if p ∈ SB and xp = ‘bg′

0 otherwise

(3.4)

The first utility function U1(xp) simply counts the number of the user scribble pixels

that are respected in the final segmentation. This utility function is used when large

amount of user input error is expected (such as in the image editing application),

since in this case we usually do not know which portion of seed is more important

than the other portions. The rational behind the design of the utility function U2(xp)

is that a user is more likely to draw a scribble whose centerline is correct while the

boundary of the scribble has more bias to be wrong (such as in the image segmen-

tation application). This utility function is used when we expect the user to make

small mistakes that mostly happen around the scribble boundary. For example, a

careful user may rarely make any mistake except at drawing scribbles on very thin

structures such as table legs. More sophisticated U(x) can be designed as long as it

increases while more user input information is respected, and is nonnegative for all

configurations due to optimization consideration.

M is a constant that controls how “flexible” the method is with respect to

user-specified scribbles. The larger M is, the more scribble pixels are likely to be

allowed foreground-background swap in the segmentation. To see this, imagine the

extreme case in which M � U(x), then essentially the denominator of Eq.(3.1) is

constant M and we are just optimizing the numerator, which is the graph-cut energy.
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Note the seed pixels are regarded equivalent to those non-seed pixels in numerator.

In this case, seed pixels have no special roles at all in the energy function, and cannot

“anchor” segmentation anymore. In our experiment, we set M to be a multiple of

the maximum possible utility function value.

M = α
∑
p∈P

[U(xp = ‘ob′) + U(xp = ‘bg′)] (3.5)

Note that by minimizing the energy function in Eq.(3.1), we attempt to minimize the

graph-cut energy Egc(x) while maximizing the respect to the user input scribbles. The

optimization process is to find out the “best” set of scribble pixels such that the swap

of their foreground-background labels enables the maximum reduction of the energy

Egc(x) (i.e., those erroneously identified as foreground or background scribbles), thus

achieving our goal of error-tolerance.

3.2.2 Optimization of ratio energy

We use Newton’s method for ratio optimization [32] to minimize the ratio

energy function R(x) = P (x)/Q(x), in which functions P,Q : X → R,X = 2V and

Q(x) ≥ 0, ∀x ∈ X . The main idea is to iteratively minimize a related linear function

instead of the ratio function until convergence. The optimal solution of the ratio

energy is given by the optimal solution of the linear function after convergence. The

related linear function, which is called λ-function, is defined as

Eλ
R(x) = P (x)− λQ(x) (3.6)
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More formally, the Newton’s method for ratio optimization is defined in Alg.3.1.

Theorem.3.1 claims the correctness of the algorithm. In our experiment, Alg.3.1 al-

ways converged in a few iterations (less than 5 iterations).

Algorithm 3.1 Newton’s algorithm for ratio optimization

Input: Min-ratio problem minx∈X R(x)
Output: Opt sln x∗ for λ∗ = minx∈X R(x)
Select some x0 ∈ X . λ1 ← R(x0). k ← 1.
while do

Compute xk = argminx∈X E(x;λk)
z(λk)← E(xk;λk)
if z(λk) = 0 then

return xk as optimal solution, λ∗ ← λk
end
λk+1 ← R(xk)
k ← k + 1

end

Theorem 3.1. [32] Algorithm 3.1 outputs an optimal solution to minimizing R(x) =

P (x)/Q(x). In addition, the generated sequence {λk} is strictly decreasing, i.e.,

λk+1 < λk.

For Alg.3.1 to work properly, the λ-function in Eq.(3.6) needs to be efficiently

optimized. Note that in Eq.(3.1), P (x) = Egc(x) is the graph-cut energy consisting

of a unary term and a pairwise term, and Q(x) = M + U(x) is a unary function

of x. Thus, the λ-function, as shown in Eq.(3.7), consists of only unary terms and

a pairwise term, which can be optimized by the graph-cut method. Since M is a

constant, the removal of M in the linear form of the optimization problem does not

affect the final solution.

Eλ(x) = Egc(x)− λU(x) (3.7)
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As a result, we will use graph-cut to optimize λ-function in each iteration. Instead

of computing a new max-flow from scratch, we used the dynamic graph-cut imple-

mentation [47] to reuse results from previous iteration as an initialization. Note we

do not need to modify the weights of all arcs in the graph for each iteration. Since

U(x) is nonzero only for those user scribble pixels, thus, only the weights of those arcs

associated with scribble pixels need to be updated in each iteration, and there are no

weight changes for all the other arcs from one iteration to another. Thus, the over-

head of updating arc weights are pretty light during the whole optimization process,

and the algorithm runs efficiently in practice. Fig.3.2 shows the graph construction.

FS

BS

object

background scribble

arcs with changing weight
from iteration to iteration

arcs with constant weight 
from iteration to iteration

foreground scribble

s

t

Figure 3.2: Only arcs connected to scribble pixels need to update their weights in

each iteration. All other arcs have constant weights during all iterations.
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3.3 Experiments

3.3.1 Experiment settings

To validate our algorithm, we use GrabCut dataset [73], which contains 50

images including a variety of objects such as person, car, goat, etc. Ground truths

for all 50 images are available.

In this preliminary work, we used some simple cost function designs for each

term in the energy function to achieve our goal of proof-of-the-concept. More com-

prehensive cost designs will likely improve the performance of our proposed method.

The region term is generated by building two Gaussian Mixture Models (GMM) for

foreground and background, respectively, in the Lab color space. These two GMM

models are then applied on all pixels to generate the region term. The boundary term

is obtained by computing the gradients on a smoothed image with the bilateral image

filtering. For the weighting coefficient η between the region term and the boundary

term in the graph-cut energy in Eq.(3.2), we set it to be 1 for all of our experiments.

For those experiments in which the number of the erroneous scribble pixels is ex-

pected to be small (Sec.3.3.3), we use the utility function Eq.(3.4). Otherwise, we

use the utility function Eq.(3.3). The coefficient α in Eq.(3.5) is set to be 1 for the

experiments in Sec.3.3.3, to strongly enforce the user scribbles as anchor points. It’s

set to be 10 for those experiments in Sec.3.3.2 to tolerate large synthetic scribble er-

rors, and is set to 100 for the experiments in Sec.3.3.4 to allow even larger and more

spatially coherent scribble errors. We will discuss the issue of choosing appropriate

α parameter in Sec.3.5.
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Two metrics are used to measure the segmentation accuracy: the labeling ac-

curacy and the Dice similarity coefficient. The metric labeling accuracy is defined as

percentage of pixels correctly labeled in the final segmentation. More precisely, as-

sume that TP, TN, FP, and FN represent the number of pixels that are true positive,

true negative, false positive, and false negative, respectively, in the segmentation.

Then the labeling accuracy = TP+TN
TP+TN+FP+FN

. The second metric is the Dice Simi-

larity Coefficient (DSC), which measures the overlap between two segmented object

volume. Suppose we have two segmentations O1 and O2 for the object, the DSC

between the two segmentations is defined as 2|O1∩O2|
|O1|+|O2| , or equivalently 2TP

2TP+FP+FN
.

Compared to the labeling accuracy, the computation of DSC does not rely on

TN, which means that DSC is not sensitive to large areas of background in the image.

For an image with large background, a segmentation even assigning every pixel to be

background will have high labeling accuracy. However, DSC is able to tell that there

is zero overlapping between the segmented object and the ground truth in this case.

To demonstrate our algorithm’s ability to handle user input errors (i.e., the

user scribble pixels with wrong foreground/background labels), we compare our seg-

mentation result to the classical graph-cut method [13] which regards the seeds (i.e.,

the user input scribbles) as a hard constraint. We also compare the proposed method

to Subr et. al.’s approach [89], which also tolerates the user input errors using an

optimization framework. The author’s publicly available code is used in our com-

parison. There are multiple tunable parameters in their implementation, an oracle is

used to test all possible combinations of the parameters to find the one that results
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in best accuracy. The resulting set of parameters is used in the comparison.

3.3.2 Experiment using synthetic scribbles

To quantitatively measure how robust the proposed algorithm is provided dif-

ferent degrees of user input errors, we follow the procedure used in Subr et. al.’s

work [89]. First 50 foreground pixels and 50 background pixels are randomly selected

based on ground truth. They are assigned as foreground or background scribbles,

respectively. Then an error-zone for each image is defined as background pixels that

are less than a distance D from the foreground, in which D is defined as 5% of the

image diagonal (Fig.3.3b). We randomly select 0 to 50 pixels in the error zone and

assign them as foreground scribbles to simulate different degrees of user input errors.

Note in our experiment, the randomly selected points are dilated by a radius

of 5 pixels before they are used as scribbles, in contrast to the isolated pixels used

in [89]. Because isolated point cannot effectively anchor segmentation in the graph-

cut method. Moreover, our manual scribble in the next experiment has a width of 10

pixels. Dilating the randomly selected pixels by a radius of 5 will result in a small

circle that’s similar to a point scribble drawn manually (Fig.3.3c). We randomly

select 0, 5, 10, 20, 30, 40, 50 erroneous sample pixels from error zone to simulate the

error percentage of 0%, 10%, 20%, 40%, 60%, 80%, 100% in the user input. Fig.3.3

shows one set of synthetic scribbles which contains 20 erroneous samples from the

error zone.

The performance of each method is shown in Fig.3.4. We can observe that
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(a) input (b) error zone (c) synthetic scribbles

Figure 3.3: Error zone mask and a set of synthetic scribbles. The foreground scribbles

consists of 50 foreground pixels and 20 error zone pixels. The background scribbles

consists of 50 background pixels.

all methods perform quite well when no error is in user input. However, as more

and more user input errors are added in the scribbles, the performances of graph-cut

and Subr’s method [89] get compromised quickly, while our method stays performing

pretty well.

The reason that Subr’s method’s performance is worse than the graph-cut

based approaches could be due to the use of a fully-connected CRF model, instead of

a sparse MRF model as used in the graph-cut based approaches. Thus, it generates a

less coherent segmentation since it can easily propagate (wrong) information to remote

pixels (see the third row in Fig.3.6). In fact, as more and more errors are added to

the user input, Subr’s method can quickly propagate those erroneous information to

remote pixels instead of stopping the error in a small local region.
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Figure 3.4: DSCs and the labeling accuracies of Subr’s error-tolerant segmentation

method, the graph-cut method, and the proposed robust segmentation method, given

different percentage of errors in randomly-generated synthetic user input.

3.3.3 Experiment aiming for high accuracy

The scribbles drawn by users aiming high segmentation accuracy may not

make as much mistake as shown in Fig.3.1a. In this case, the user input error usually

comes from drawing scribbles on fine structures such as the bush stem, vase handle,

sheep legs shown in the second row of Fig.3.5. To validate our algorithm for this

type of user input, a user was asked to draw scribbles on all 50 images in GrabCut

dataset manually in a natural way, i.e., the user neither intentionally makes mistake,

nor makes excessive efforts to accurately draw the scribbles. As a result, no scribble

errors are found in 20 images out of 50. The remaining 30 images have scribble errors

in different degrees. On average, each of those 30 image scribbles contains 1.5% errors,

i.e., 1.5% of the foreground scribble pixels are actually background with respect to

the ground true. The maximum scribble error is 8.4%.

The proposed robust segmentation (RS) method, the graph-cut (GC) method,

and Subr’s error-tolerant method [89] are used to segment those 20 images with error-

free manual scribbles (reported as “RS/GC/Subr’s(correct)” in Table.3.1), and those
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30 images with erroneous manual scribbles ((reported as “RS/GC/Subr’s(error)” in

Table.3.1)). To gain better understanding about how the errors affect the performance

of graph-cut, we use an oracle to correct the errors by removing erroneous foreground

scribble pixels that are actually background. Then, the graph-cut method runs on

those corrected scribbles and reported as “GC(err-corrected)” in Table.3.1. Note that

this method is not really a fair reference. It can be excessively “accurate” because

when the oracle removes the scribble pixels outside the object, it is actually drawing

the perfect boundary locally using the ground truth.

Table.3.1 shows the performance of each method. When no error happens,

both the proposed method and the graph-cut method achieve high accuracy. But

when the user scribbles contain errors, the proposed method performs better than

the graph-cut method due to its tolerance of user input errors. The difference in

accuracy metrics does not seem very high, which is understandable because users

only make small errors around object boundary. However, the boundary accuracy

of the segmentation indeed is improved by using the proposed robust segmentation

method. Fig.3.5 shows the improved boundary by using the proposed method.

In the first column of Fig.3.5, the stem segmented by the proposed method

is much thinner than graph-cut, which is closer to the ground truth. The proposed

method also generates more accurate vase handle in the second column, more accurate

sheep and person legs in the third and forth column. Subr’s method performs even

worse than the graph-cut method. It usually does not generate a spatially coherent

segmentation and propagates errors in the segmentation to remote regions from the
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Table 3.1: Manual scribble experiment result.

method (scribble type) DSC (%) label accuracy (%)

Subr’s [89] (correct) 92.88 96.77

GC (correct) 97.64 98.91

RS (correct) 97.65 98.92

Subr’s (error) 82.68 92.23

GC (error) 95.19 98.44

RS (error) 95.26 98.46

GC (err-corrected) 95.72 98.61

Subr’s (all) 86.76 94.05

GC (all) 96.17 98.63

RS (all) 96.22 98.64

GC(all, err-corrected) 96.49 98.73

erroneous scribbles, as shown in the third row in Fig.3.5.

For the 30 images with erroneous scribbles, the proposed robust segmentation

result corrected 60.1% of the erroneous scribble pixels on average.

3.3.4 Illustrative results

Scribbles with large errors frequently happens on mobile touch-screen devices

due to the use of less accurate pointing devices (such as fingers). In these experi-

ments, the user scribbles contain much more errors. Illustrative results are shown in

Fig.3.6. Subr’s method can easily propagate foreground scribble errors to background

due to its fully connected CRF formulation, as shown in the bear and the lady images.

Another issues is that it does not generate spatially coherent segmentation for tex-

tured object, as shown in the grave tombstone and the sheep images. The graph-cut

method uses the user scribbles as hard seeds, and thus is not able to correct errors
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Figure 3.5: Improved boundary accuracy by using the proposed robust segmentation

method. Note the proposed method improved boundary segmentation accuracy of

the bush stem, vase handle, sheep legs and person’s legs.
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in user input. In contrast, the proposed method performs very well in this type of

situation.

One interesting case is the sheep (last column in Fig.3.6). In order to separate

the two legs shown in the image, the user adds one background scribble between them.

Graph-cut simply follows the boundary of the added background scribble to separate

the two legs. Our proposed method, however, is able to reject part of the erroneous

background scribble pixels and segments the two legs with higher accuracy.

3.4 Proof Of Running Time

Although experimentally the algorithm always converge within several itera-

tions, a theoretical running time proof provides a dependable worst case guarantee

even for ill-posed cases. The Newton’s method, which is also called Dinkelbach’s al-

gorithm [74, 25], can be proved to converge superlinearly for continuous optimization

problems [74].

A more elaborated derivation of the superlinear convergence property is pre-

sented in [35]. In more details, first the denominator function value is strictly de-

creasing in every iteration (Lemma.3.2). Then an error function measured in terms

of ratio objective function value is shown to reduce by a fraction of its previous

iteration (Thm.3.3). What’s even better, this fraction bound converges to zero as

more iterations are run. This means the convergence rate increases as we get closer

to the optimal solution, in contrast to many algorithms’ slower convergence rate as

they get close to the minimum. This fractional error reduction behavior leads to a
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Figure 3.6: Illustrative results on user scribbles with large amount of errors.
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pseudo-polynomial bound on the number of iterations assuming the numerator and

denominator is bounded by polynomials in number of variables n (Thm.3.4). Fi-

nally we show that the proposed robust segmentation energy function satisfy this

condition and the pseudo-polynomial bound on the number of iterations is applicable

(Thm.3.5).

In this section, we are going to show that the Newton’s algorithm for ro-

bust segmentation (Alg.3.1) converges in pseudo-log number of iterations O(log n +

logCmax) (Thm.3.5), where n is the number of pixels, and Cmax is the maximum ab-

solute value of energy term coefficients of numerator and denominator. The proofs of

monotonic denominator decreasing (Lemma.3.2), error fractional reduction (Thm.3.3)

and pseudo-polynomial number of iterations when both numerator and denominator

are bounded by polynomials in n (Thm.3.4) are elaborated versions shown in [74]

and [35]. Although the lemma and theorem claims are the same, the proofs given

here contain more intuitive explanations including where all the inequalities come

from. Finally, it is novel to identify which polynomials the numerator and denomi-

nator are bounded by, and therefore conclude the bound of number of iterations for

robust segmentation’s Dinkelbach’s algorithm (Thm.3.5).

3.4.1 Simplified notation and lemma

To simplify notation, we rewrite R(x) = P (x)/Q(x) to be R(x) = f(x)/g(x),

where g(x) > 0. In each Newton’s method iteration, we have λk+1 = R(xk) =

f(xk)/g(xk).
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Lemma 3.2. g(xk+1) < g(xk),∀1 ≤ k < K − 1, where K is the number of iterations

Alg.3.1 takes to converge. In another word, {g(xk)} is a strictly decreasing sequence

except the last iteration. For the last iteration, g(xK) ≤ g(xK−1).

Proof. When 1 ≤ k < K − 1, we have

0 = f(xk+1)− λk+2g(xk+1)

> f(xk+1)− λk+1g(xk+1)

= f(xk+1)− λkg(xk+1) + λkg(xk+1)− λk+1g(xk+1)

≥ f(xk)− λkg(xk) + λkg(xk+1)− λk+1g(xk+1)

= λk+1g(xk)− λkg(xk) + λkg(xk+1)− λk+1g(xk+1)

= (λk+1 − λk)(g(xk)− g(xk+1))

(3.8)

The second inequality comes from the fact that xk minimizes E(x;λk) = f(x) −

λkg(x). Note λk+1 < λk according to Thm.3.1. Thus, g(xk) − g(xk+1) > 0, i.e.,

g(xk+1) < g(xk), ∀1 ≤ k < K − 1.

When k = K − 1, Eq.(3.8) still holds except the first strict inequality should

be replaced with the equality. Thus, we have g(xK) ≤ g(xK−1). �

3.4.2 Error reduction in each iteration

With Lemma 3.2, it can be shown that the error at each iteration is reduced

to a fraction of the error in previous iteration.
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Theorem 3.3.

λk+1 − λ∗

λk − λ∗
≤ 1− g(x∗)

g(xk)
< 1

where

rk = 1− g(x∗)

g(xk)
≥ 0

decreases towards 0 with increasing k.

Proof.

λk+1 − λ∗

λk − λ∗
=

f(xk)
g(xk)

− λ∗

λk − f(x∗)
g(x∗)

=
g(x∗)[f(xk)− λ∗g(xk)]

g(xk)[λkg(x∗)− f(x∗)]

= −g(x∗)[f(xk)− λ∗g(xk)]

g(xk)[f(x∗)− λkg(x∗)]

= −g(x∗)[f(xk)− λkg(xk) + (λk − λ∗)g(xk)]

g(xk)[f(x∗)− λkg(x∗)]

= −g(x∗)[f(xk)− λkg(xk)]

g(xk)[f(x∗)− λkg(x∗)]
− g(x∗)(λk − λ∗)g(xk)

g(xk)[f(x∗)− λkg(x∗)]

≤ −g(x∗)

g(xk)
+

g(x∗)(λ∗ − λk)
f(x∗)− λkg(x∗)

(3.9)

= −g(x∗)

g(xk)
+
f(x∗)− λkg(x∗)

f(x∗)− λkg(x∗)

= 1− g(x∗)

g(xk)
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The inequality at Eq.(3.9) comes from the fact that xk minimizes E(x;λk) = f(x)−

λkg(x). In another word, we know

f(xk)− λkg(xk) ≤ f(x∗)− λkg(x∗) (3.10)

Since λk > λk+1 ≥ λ∗ and g(x) > 0,∀x, we have f(x∗)−λkg(x∗) < f(x∗)−λ∗g(x∗) =

0. Thus, Eq.(3.10) becomes

f(xk)− λkg(xk)

f(x∗)− λkg(x∗)
≥ 1

−g(x∗)

g(xk)
· f(xk)− λkg(xk)

f(x∗)− λkg(x∗)
≤ −g(x∗)

g(xk)

This is the inequality at Eq.(3.9).

From Thm.3.2, g(xk) ≥ g(xk+1) ≥ g(x∗). Thus, g(x∗)/g(xk) ≤ 1, and ri =

1− g(x∗)/g(xk) ≥ 0.

According to Thm.3.2, if 1 ≤ k < K − 1, rk+1 < rk, where K is the number

of iterations in Alg.3.1. If k = K − 1, rk+1 = rK ≤ rK−1. Moreover, xK = x∗, thus

g(xK) = g(x∗) and rK = 0.

In sum, r1 > r2 > . . . > rK−1 ≥ rK = 0. Thus, rk decreases towards 0 with

increasing k. �

Note the error reduction bound rk = 1 − g(x∗)/g(xk) will improve (become

smaller) as k becomes larger. This implies very rapid convergence of the algorithm,

especially when close to the optimal solution.
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3.4.3 Number of iteration bound

Theorem 3.4. For integer valued function f(x) and g(x) > 0, if the magnitude of

f(x) and g(x) is bounded by a polynomial in n, i.e., |f(x)| ≤ p(n) and g(x) ≤ p(n),

then number of iterations in Alg.3.1 is O(log n + logCmax), where n is number of

variables and Cmax is the largest absolute value of any monomial in p(n).

Proof. We consider the smallest interval δ between any two different x and x′ that

results in different ratios R(x) 6= R(x′).

δ = R(x)−R(x′) =
f(x)

g(x)
− f(x′)

g(x′)
=
f(x)g(x′)− f(x′)g(x)

g(x)g(x′)

Since f and g are integer valued, f(x)g(x′)− f(x′)g(x) ≥ 1. Thus,

δ ≥ 1

g(x)g(x′)

Since g(x) is bounded by polynomial p(n), we have g(x) ≤ p(n) ≤ Cmax · q(n) where

Cmax is the largest absolute value of any monomial in p(n), and q(n) is a polynomial

whose coefficients are all ones. Thus,

δ ≥ 1

C2
max · q2(n)

If |R(x)−R(x′)| < δ, then R(x) = R(x′). According to Thm.3.3, each iteration

the error is reduced by a ratio of at least rk = 1− g(x∗)/g(xk) < 1. Thus, there must

exist θ < 1 such that in each iteration, |λk − λ∗| < θ|(λk−1 − λ∗)|, k > 1.

Assume after N iteration, the error is reduced to be less than 1/C2
max · q2(n),



www.manaraa.com

75

then

(λ0 − λ∗)θN =
1

C2
max · q2(n)

(
1

θ
)N = (λ0 − λ∗)C2

max · q2(n)

N =
⌈
log 1

θ
(λ0 − λ∗)C2

max · q2(n)
⌉

N =
⌈
log 1

θ
(λ0 − λ∗) + 2 log 1

θ
Cmax + 2 log 1

θ
q(n)

⌉
(3.11)

After at most N + 1 iterations, the error will be smaller than δ, as follows.

0 ≤ λN+1 − λ∗ <
1

C2
max · q2(n)

≤ δ

Therefore, λN+1 = λ∗. The algorithm terminates.

Note λ0 − λ∗ ≤ max |f |
min g

− −max |f |
min g

= 2max |f |
min g

≤ 2p(n)
1

. Convert N + 1 (Eq.3.11)

using big O notation, the algorithm terminates within O(log n+ logCmax) number of

iterations. �

Theorem 3.5. The Newton’s algorithm for robust interactive segmentation converges

in O(log n + logCmax) iterations, where n is the number of pixels, and Cmax is the

largest absolute value of energy term coefficients of numerator and denominator.

Proof. Note our robust graph-cut energy has integer valued f and g over binary

variables x.

The numerator contains n data terms Dp,∀p ∈ P , and at most n2 smoothness



www.manaraa.com

76

terms Vpq, ∀(p, q) ∈ N . Thus, the numerator is bounded by nmax |Dp|+n2 max |Vpq|.

The denominator contains only n unary user seed utility terms and constant

M . Thus, the denominator is bounded by nmaxUp +M .

Let Cmax = max{|Dp|, |Vpq|, Up,M}, then |f(x)| ≤ Cmax · (1 + n + n2) and

g(x) ≤ Cmax · (1 +n+n2). According to Thm.3.4, the number of iterations in Alg.3.1

is O(log n+ logCmax). �

3.5 Discussion

3.5.1 Ratio energy

Ratio energy has been used for image segmentation in different ways. Wang

et al.[100] used a ratio energy maximizing the average intensity difference between

foreground and background for segmentation. Kolmogorov et al.[49] alleviates the

shrinkage bias of graph-cut segmentation by using foreground volume as the denom-

inator in the ratio energy. Here we use a different idea that the denominator is a

utility function which encourages the user input to be respected as much as possible.

How strong this encouragement is can be tuned by the parameter M in Eq.(3.1),

or, equivalently α in Eq.(3.5). Thus, we can adjust the proposed method for users

of different styles as we have shown in the different experiments in Sec.3.3.2, 3.3.3,

3.3.4.

3.5.2 Parameter α setting

To choose an appropriate α value, the basic guideline is that the larger α is,

the more tolerant of user input errors the algorithm is. In Fig.3.7b, although by using
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α = 1 our method can tolerate the erroneous scribble at head, it does not tolerate

many other errors of the scribble. In Fig.3.7c, with α = 10 the proposed method is

doing a much better job. However, there is still erroneous segmentation at the elbow.

In Fig.3.7d, using α = 100, our method achieves the best segmentation among the

uses of those three α values.

On the other hand, a large α value means that the “anchoring” ability of

the scribble pixels is reduced. In challenging images, the “anchoring” ability can be

crucial to the correct segmentation. Fig.3.8 shows a challenge case of cheetah. When

α = 1, the paws and the tail of the cheetah are correctly segmented by following the

guidance of the foreground scribbles. However, when α = 100, the paws and part of

the tails are incorrectly segmented as background.

Thus, for those images with the expectation of large user input errors, we

can use large α value to accommodate those errors. For challenge images (e.g, with

very fine structures, or similar foreground and background profile), the “anchoring”

ability can be crucial to the accurate segmentation. Thus a small α value should be

selected, and users are advised to provide more accurate scribbles in order to achieve

an accurate segmentation.

However, we should note that no matter what α value is chosen, if the evidence

for the foreground/background shown by the graph-cut energy is strong enough, the

erroneous scribbles can be automatically corrected. Introducing parameter α allows

us to control how to determine the evidence is strong enough.
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3.5.3 Relationship to parametric max-flow

The proposed method requires a series of max-flow computation with λ as

the parameter of some source-to-vertex or vertex-to-sink edges. This looks similar to

parametric max-flow problem [49, 31], a combinatorial problem which solves a series of

max-flow in the asymptotic complexity of computing a single max-flow. However, we

are going to show that this technique cannot be formulated as a parametric max-flow

problem.

The parametric max-flow problem aims to solve a series of max-flow problems

(or equivalently minimum s-t cut problems) for a series of parameter values {λi} in a

parametric network. A parametric network is a graph/network G(V ∪{s, t}, Aλ∪A0)

in which Aλ is the set of arcs with their weight parameterized by λ and A0 is the set

of arcs with constant weight. s and t are source and sink vertices, respectively. V is

the set of all other vertices.

A parametric network requires the arc weights to satisfy the following proper-

ties (Section 2.3. in [31]):

1. Aλ = {(s, v)}∪{(v, t)}, v ∈ V . i.e., all parameterized arcs are either from source

s or sink t.

2. A0 = {(u, v)}, u, v ∈ V . i.e., all arcs not involving source s or sink t have

constant weights.

3. arc weight wλ(s, v) is a nondecreasing (or nonincreasing, respectively) function

of λ for all v ∈ V .

4. arc weight wλ(v, t) is a nonincreasing (or nondecreasing, respectively) function
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of λ for all v ∈ V .

One appealing theoretical property of a parametric network satisfying the

above criterion is that there can only be at most |V | + 1 distinct minimum s-t cuts.

And all |V |+1 cuts can be computed using the time complexity of computing a single

s-t cut, instead of |V |+ 1 cuts.

The proposed robust segmentation method satisfies the properties 1 and 2.

However, it does not satisfy the properties 3 and 4, which requires the arc weight

either monotonically increase from source to sink or monotonically decrease from

source to sink. The problem comes from the user input utility function defined in

Eq.(3.3),(3.4). To be more specific, observe the following arc weights.

wλ(s, vp) = Dp(xp = ‘bg′)− λU(xp = ‘bg′), p ∈ SB (3.12)

is nonincreasing since U(xp = ‘bg′) > 0

wλ(vp, t) = Dp(xp = ‘ob′)− λU(xp = ‘ob′), p ∈ SF (3.13)

is nonincreasing since U(xp = ‘ob′) > 0.

This behavior of the arc weights prevents parametric max-flow technique to

be applied in the proposed method.

3.6 Conclusion

We propose a novel ratio energy function to tolerate user input errors in

scribble-based interactive segmentation. It minimizes a graph-cut energy which incor-
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(a) scribbles (b) α = 1 (c) α = 10 (d) α = 100

Figure 3.7: The larger α is, the more error-tolerance the algorithm can achieve.

(a) input (b) scribbles (c) α = 1 (d) α = 100

Figure 3.8: The larger α is, the less “anchoring” ability the scribble has. Note when

α = 100, the paws and part of the tail of the cheetah is segmented as background

although specified as foreground seeds.

porates both region and boundary information and maximizes the portion of scribbles

that are respected in the segmentation result. The ratio energy can be optimized

exactly using an efficient algorithm. Experiments based on synthetic and manual

scribbles are conducted to validate the algorithm’s robustness to large amount of user

input errors and the ability to achieve high segmentation accuracy when presented

with user input errors. Promising results are shown in our the experiments. Tight

theoretical running time bounds are proven to guarantee fast convergence.
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CHAPTER 4
SURFACE-OBJECT SEGMENTATION WITH MULTI-SCALE

TECHNIQUE

A novel segmentation method is proposed to simultaneously segment topo-

logically flexible objects and interacting adjacent surfaces with known topologies.

Incorporating such surface-object interaction prior information plays an important

role in accurate segmentation when the target object and surfaces have similar inten-

sities and no clear edge lies between them. Moreover, a novel multi-scale approach is

used to further boost segmentation accuracy of the target object, which utilizes both

fine level pixel-wise information as well as coarse level region-wise information.

The problem is formulated as a Markov Random Field (MRF) energy mini-

mization problem, which can be efficiently and exactly solved by computing a mini-

mum s-t cut in an appropriately constructed graph. The novel approach can simul-

taneously segment topologically flexible objects (via graph cut) and the interacting

adjacent surface with known topology (via graph searching). The ability of incorpo-

rating the surface-object interaction information and multi-scale information increases

segmentation accuracy and robustness.

The performance of the proposed method is assessed on the application of lung

tumor segmentation in 38 Mega-Voltage Cone-Beam CT (MVCBCT) datasets. The

Dice coefficient (DSC) is improved from 0.759±0.102 to 0.876±0.027, and the average

symmetric surface distance is improved from 4.417±3.211 mm to 1.370±0.468 mm.

A student t-test shows that the improvements are statistically significant.
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4.1 Introduction

There are compelling applications demanding a novel approach for simultane-

ous segmentation of mutually interacting objects/regions and surfaces, such as two

nearby organs, tumors located in proximity to organ boundaries, cysts positioned

close to other adjacent structures, and moving tumors along with lung boundaries

in dynamic or longitudinal images. In this context, the target objects may have an

arbitrary and unknown topological shape, while the interacting surfaces may have

known topology.

We develop a new segmentation approach that would for the first time inte-

grate graph cut ([12]) and graph searching ([52]) to combine the strengths of both

methods while overcoming their individual drawbacks. The novel approach can si-

multaneously segment topologically flexible objects (via graph cut) interacting with

adjacent surfaces with known topology (via graph searching). Incorporating such

surface–object interrelations increases segmentation accuracy and robustness by uti-

lizing clues from interacting surfaces. Moreover, a multi-scale scheme is developed to

segment the topologically flexible objects incorporating both pixel-wise information

and region-wise information based on a data-drive over-segmentation of the image

([76]). Information from different scales are mutually propagated to each other by

a soft label consistency constraint. Finally, a graph encoding both surface-object

interaction information and the multi-scale object information is constructed, and a

minimum s-t cut in the graph defines the segmentation of the target object and the

interacting surfaces.
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Multi-scale methods has been widely used as a speedup technique to some ex-

isting segmentation methods ([51, 59, 77]). These methods usually work sequentially

on different scales. Recently the multi-scale methods are also shown to be helpful

for improving segmentation accuracy in natural images ([44, 21]). [21] builds affinity

matrices at different scales and enforce the cross-scale constraint that the segmen-

tation at coarse scale should be locally an average of the fine scale segmentation.

The multi-scale segmentation is then conducted simultaneously over all scales by

solving an approximate eigenvector problem. The cross-scale constraint propagates

information across different scales to reach a consistent segmentation at all scales.

The method coarsens an image based on a regular grid, which may blur details at

the coarse levels. A data-driven coarsening scheme, such as over-segmentation, may

preserve details better at the coarse levels. [44] used segments/regions in an over-

segmented image (obtained by methods such as mean shift) as nodes in the coarse

level. Each pixel at the original resolution is used as nodes in the fine level. A soft

label consistency constraint is enforced between the coarse level and the fine level.

The segmentation is computed by a convex optimization technique on both levels

simultaneously. The problem is reduced to a Random walk with a restart (RWR)

problem, for which a straightforward implementation requires either quadratic space

and cubic pre-computation time or slow response time on queries ([94]).

[24] proposed a multi-region segmentation method which enforces contain-

ment, exclusion and attraction geometric constraints among multiple objects. The

segmentation problem is reduced to computing a minimum s-t cut in an appropriate
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1SG

over-segmentation

surface-object 
interaction prior

input image output segmentation
(object + surfaces)2SG

2PSA
1PSA

PG

RG

PRA

Figure 4.1: Workflow of the multi-scale segmentation with surface-object interaction

prior. Surface-object interaction prior is encoded in the resulting graph. Region-wise

information from an over-segmentation of the original image is also incorporated. The

target object and the interacting surfaces are segmented simultaneously. More details

are presented in Sec.4.2.

constructed graph. The graph contains a set of graph-cut based subgraphs. Inter-

subgraph arcs are added to encode the geometric constraints. No topological prior

information is enforced for any region/object.

In our preliminary study ([85]), we developed a novel surface-object segmenta-

tion method, in which the target object is segmented simultaneously with one or more

interacting surfaces along a specific direction to improve segmentation accuracy and

robustness. The simultaneous segmentation of the adjacent surface with the target

object prevents the target object segmentation from “leaking” beyond the adjacent

surface. The method integrates a graph-cut subgraph for the object segmentation

with a graph-searching subgraph ([52]) for the adjacent surface segmentation.

In this work, we further generalize the surface-object segmentation method

with the interaction of multiple surfaces from different directions, and demonstrate
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how to incorporate a novel multi-scale segmentation scheme into a single optimiza-

tion process to achieve high segmentation accuracy. See Fig.4.1 for the workflow

of the proposed method. The pixel-wise and region-wise information of the target

object is encoded using graph-cut based graphs in a multi-scale scheme, handling

objects with an arbitrary topology. The interacting surface information is encoded

using a graph-searching based graph, which enforces the prior topology constraint

of the surfaces. The interaction arcs between subgraphs for pixel-wise information

and region-wise information mutually propagates the low-level cues and higher-order

cues of the target object. The interaction arcs between the pixel-wise subgraph and

the surface-segmentation subgraphs enforces the surface-object interaction prior in-

formation. A Markov Random Field (MRF) energy is then optimized by computing a

minimum s-t cut in the appropriately constructed graph to achieve the segmentation

of the target object and the interacting surfaces.

This section is organized as follows. In Sec.4.2, we describe the method. The

MRF energy is introduced in Sec.4.2.1-4.2.3 and the graph construction is discussed

in Sec.4.2.4-4.2.4.3. In Sec.4.3, we describe the experiment data and settings, energy

term design and parameter settings. The quantitative result and the qualitative result

of the experiment are also shown. We discuss the novelties and some issues of our

method in Sec.4.4 and conclude in Sec.4.5.
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4.2 Method

The proposed method formulates the segmentation method as an MRF energy

minimization problem, which can be optimized by computing a minimum s-t cut. We

first introduce the MRF energy for the multi-scale segmentation of the target object

and the energy for the interacting surface segmentation. A novel graph transformation

is then presented to encode the energy function.

Our energy comprises three energy terms: the multi-scale graph-cut based ob-

ject segmentation term EMS for segmenting the target object, the terrain-like surface

segmentation term ETS for segmenting the interacting surfaces adjacent to the tar-

get object, and the surface-object interaction term EMS−TS enforcing the interaction

prior information between the target object and adjacent surfaces.

E = EMS(fP , fR) + ETS(SS) + EMS−TS(fP ,SS) (4.1)

where fP is the set of variables labeling each pixel as object or background, fR is the set

of variables labeling each region in an over-segmented image as object or background

(see Fig.4.2 for an example of over-segmentation), SS is the set of variables defining

the locations of all interacting surfaces. Now we discuss each term in more details.

4.2.1 Multi-scale target object segmentation term

In this section, we consider a novel multi-scale segmentation energy which

incorporates both pixel-wise information from the original image and region-wise

information based on a data-drive over-segmentation of the original image.
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(a) input image (b) over-segmentation

Figure 4.2: Over-segmentation of an image generated by watershed.

Given an image, assume P is the set of all pixel locations and I is the set of

intensities associated with all the pixels. For each pixel p, a label fp ∈ L = {0, 1}

is assigned. If a pixel is labeled as 0, then it is assigned a “background” label in

the segmentation; otherwise, it is assigned an “object” label. Over-segmentation

of an image is the partition of an image into many self-coherent regions/segments.

A single meaningful object, such as a tumor, can be divided into multiple regions

instead of being segmented as a single object. Techniques such as mean shift ([20])

and watershed ([76]) can be used to generate an over-segmentation of the image. An

over-segmentation example by watershed is shown in Fig.4.2. Although the over-

segmentation result does not directly correspond to anatomically meaningful objects,

it still groups portions of image into meaningful/self-homogeneous regions. Let R be

the set of segments in the over-segmentation. A pixel p is a child pixel of a region

r ∈ R if p ∈ r. In this case, r is called the parent region of pixel p.

The multi-scale energy EMS consists of three terms: a pixel layer term EP , a

region layer term ER, and a pixel-region consistency term EPR (Eq.(4.2)). See Fig.4.4
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for an illustration of the pixel layer and the region layer.

EMS(fP , fR) = EP (fP) + ER(fR) + EPR(fP , fR) (4.2)

EP (fP) =
∑
p∈P

Dp(fp) + ηP
∑

(p,q)∈NP

Vpq(fp, fq) (4.3)

ER(fR) =
∑
r∈R

Dr(fr) + ηR
∑

(r1,r2)∈NR

Vr1,r2(fr1 , fr2) (4.4)

EPR(fP , fR) =
∑
r∈R

∑
p∈r

Θp,r(fp, fr) (4.5)

The pixel layer term EP (fP) (Eq.(4.3)) is a graph-cut energy term containing

a data term Dp(fp) and a smoothness term Vpq(fp, fq) over all pixels P . The data

term is a unary term which inversely measures the likelihood of pixel p belonging

to the object or background. For example, Dp(fp = 1) < Dp(fp = 0) if pixel p is

more likely to be in the object instead of background. Minimizing the data term

encourages pixels which are more likely to belong to the object to be indeed labeled

as object, and vice versa. The smoothness term is a pairwise term defined over the

pixel neighborhood system NP , which can be a 4 or 8 neighborhood system in 2D

and a 6 or 26 neighborhood system in 3D. In this work, we use a 6-neighborhood

setting for 3D images. For a pair of neighboring pixels (p, q) ∈ NP , Vpq(fp, fq) = 0

if fp = fq and Vpq(fp, fq) > 0 if fp 6= fq. This encourages neighboring pixels to have

the same label, which helps to generate more spatially coherent segmentations. ηP is

the balancing coefficient between the data term and the smoothness term in the pixel

layer.

The region layer term ER(fR) (Eq.(4.4)) consists of a data term and a smooth-
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ness term similar to EP (fP), except that the variable fR represents regions in the over-

segmentation instead of pixels in the original image as in fP . The data term Dr(fr)

for a region r ∈ R can be computed from some aggregate statistics of its children

pixels, such as the average data term over its children pixels. It can also incorporate

more sophisticated information such as texture description within the region. The

region neighboring system NR can be defined in different ways. In this work, we

define two regions (r1, r2) to be neighboring if the Euclidean distance between their

centroids is within a certain threshold. ηR is a balancing coefficient between the two

terms in the region layer.

The pixel-region consistency term EPR(fP , fR) (Eq.(4.5)) penalizes the differ-

ence between each pixel label fp and its parent region label fr. If fp = fr, then

Θp,r(fp, fr) = 0. If fp 6= fr, then Θp,r(fp, fr) > 0. This encourages the pixel label to

agree with its parent region label, i.e., the segmentation at the coarse level and the

fine level should be consistent as much as possible. Note this consistency constraint

is soft–the children pixels can have different labels from their parent regions as long

as the corresponding penalty is paid. This allows the boundary to be extracted ac-

curately at the pixel resolution, instead of having to be the same as the boundary in

the over-segmentation.

4.2.2 Terrain-like surface segmentation term

A 3D terrain-like surface is a surface that intersects exactly once with every

column along one specific direction. See Fig.4.3 for an example of a terrain-like surface
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Figure 4.3: Terrain-like surface along the z-direction.

along the z-direction. Assuming the image size is X×Y ×Z, then a terrain-like surface

along the z-direction is defined as S : {0, . . . , X−1}×{0, . . . , Y −1} → {0, . . . , Z−1}.

In other words, for any 2D coordinate (x, y), S(x, y) returns the surface height along

the z-direction, i.e., the location of the terrain-like surface at (x, y). Graph-searching

([52]) is an effective approach for segmenting terrain-like surfaces.

Suppose S is the set of surfaces we want to segment, then for every surface

S ∈ S, the terrain-like surface segmentation term ETS(SS) is the sum of on-surface

cost cp for all pixels p that are on the surface S (Eq.(4.6)).

ETS(SS) =
∑
S∈S

ηS
∑
p∈S

cp (4.6)

The cost cp is the inverse likelihood of pixel being on the surface. This cost

can be obtained by edge detection. The surface S is also subject to smoothness

constraint, which restricts the surface from jumping abruptly at nearby locations.

The smoothness constraint is defined along the x-direction as |S(x, y)−S(x+1, y)| ≤

∆x, 0 ≤ x < X − 1, where ∆x is a predefined threshold limiting the surface jump
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at nearby (x, y) locations along the x-direction. Similarly, the smoothness along the

y-direction is defined as |S(x, y)−S(x, y+ 1)| ≤ ∆y, 0 ≤ y < Y −1. ηS is a balancing

coefficient between the surface segmentation term for surface S and other terms.

4.2.3 Surface-object interaction term

A surface is interacting with the target object if the target object is at least

dmin away from the surface. From now on, we assume that the object is below the

z-terrain-like surface S for at least distance dmin. Note this assumption does not

lose any generality. Because the cases when the object is above the z-terrain-like

surface and the cases when the terrain-like surface is actually x or y-terrain-like can

be reduced to this case by rotating and flipping the image. This rotating and flipping

of the image does not affect the graph construction, as will be discussed in Sec.4.2.4.3.

The surface-object interaction term EMS−TS(fP ,SS) is used to enforce the prior

information that the target object O is at least dmin below surface S (Eq.(4.7)).

EMS−TS(fP ,SS) =
∑
S∈S

∑
p(x,y,z)

S(x,y)−z<dmin

ΦS
p (fp) (4.7)

To be precise, for all pixels p(x, y, z) ∈ O, we would like to enforce the prior S(x, y)−

z ≥ dmin. Thus, ΦS
p (fp = 0) = 0 since fp = 0 means pixel p is background while

the surface-object constraint only concerns object pixels. Moreover, ΦS
p (fp = 1) > 0

is the penalty paid when S(x, y) − z < dmin. If ΦS
p (fp = 1) = +∞, then we enforce

dmin as a hard constraint that no object voxels can be higher than dmin below surface

S. Otherwise, the minimum surface-object distance is enforced as a soft constraint–
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as long as the penalty is paid, voxels violating the minimum surface-object distance

constraint can still be labeled as object.

4.2.4 Graph construction

A graph consisting of multiple subgraphs is constructed encoding the MRF

energy terms in Eq.(4.1). Computing a minimum s-t cut in the constructed graph

minimizes the MRF energy exactly.

Two subgraphs GP , GR are built for encoding the object segmentation term

EMS(fP , fR), which encodes pixel-wise information and region-wise information re-

spectively. A set of arcs APR is added between GP and GR to enforce segmentation

consistency between the fine level (pixel-layer) and coarse level (region-layer). For

each surface S ∈ S, one subgraph GS is built to encode the corresponding surface

segmentation term. A set of arcs APS is added between the pixel-wise object segmen-

tation subgraph GP and each interacting surface segmentation subgraph GS, S ∈ S.

This encodes the surface-object interaction term. A more detailed description for

each subgraph is given in Sec.4.2.4.1,4.2.4.2, 4.2.4.3.

4.2.4.1 Graph construction for multi-scale segmentation

To encode the multi-scale object segmentation term (Eq.(4.2)), two subgraphs

GP (VP , AP ), GR(VR, AR) and a set of interaction arcs APR between them are con-

structed. The pixel-layer subgraph GP and region-layer subgraph GR encode the

pixel layer term and the region layer term respectively. The interaction arcs APR

between GP and GR encode the pixel-region consistency term between the two layers.
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PG

RG

PRA
input Image
(pixel layer)

over-segmentation
(region layer)

Figure 4.4: The construction of graph GMS for multi-scale object segmentation. (Best

read in color.) An over-segmentation of the input image is generated as a coarse level

representation of the original image. Two subgraphs are constructed. Subgraph GP

encodes pixel-wise information. Blue arcs in GP encodes the pixel-wise smoothness

term. Subgraph GR encodes region-wise information. Red arcs in GR encodes the

region-wise smoothness term. The pixel-region interaction arcs APR (green arcs)

enforces the soft pixel-region consistency term.

The pixel layer subgraph GP (VP , AP ) is built using graph-cut construction

([12]). For each pixel p ∈ P , a vertex vp is added. Every vertex vp has an incoming arc

from source vertex s and an outgoing arc to sink vertex t, carrying weight Dp(fp = 0)

and Dp(fp = 1) respectively. For every pair of neighboring pixels (p, q) ∈ NP , an arc

from vp to vq with weight Vpq(fp = 1, fq = 0) and an arc from vq to vp with weight

Vpq(fp = 0, fq = 1) are added (blue arcs in Fig.4.4).

Given any s-t of the subgraph GP , we interpret the labeling fp of every pixel

p ∈ P as follows. If vertex vp is in the source set, then we assign fp = 1 and pixel p

is labeled as object. If vertex vp is in the sink set, then we assign fp = 0 and pixel p

is labeled as background.

Now we show that the above graph construction correctly encodes the pixel
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layer term EP (fP) (Eq.(4.3)). When vertex vp is in the source set, the arc (vp, t)

is cut and the associated penalty Dp(fp = 1) is correctly enforced. Similarly, when

vertex vp is in the sink set, the arc (s, vp) is cut and the associated penalty Dp(fp =

0) is correctly enforced. If two neighboring pixels p, q have the same labels in the

segmentation (fp = fq), then both arc (vp, vq) and arc (vq, vp) are not in the cut. No

penalty is enforced in this case. But if they have different labels in the segmentation,

then either arc (vp, vq) is cut (when vp is in the source set, vq is in the sink set)

and the associated penalty Vpq(fp = 1, fq = 0) is correctly enforced, or arc (vq, vp)

is cut (when vp is in the sink set, vq is in the source set) and the associated penalty

Vpq(fp = 0, fq = 1) is correctly enforced.

The region layer subgraph GR(VR, AR) is built similarly to GP . For each region

r ∈ R, a vertex vr is added. Every vertex vr has an incoming arc from source vertex s

and and an outgoing arc to sink vertex t, carrying weight Dr(fr = 0) and Dr(fr = 1)

respectively. For every pair of neighboring regions (r1, r2) ∈ NR, an arc from vr1

to vr2 with weight Vr1,r2(fr1 = 1, fr2 = 0) and an arc from vr2 to vr1 with weight

Vr1,r2(fr1 = 0, fr2 = 1) are added (red arcs in Fig.4.4).

The inter-subgraph arcs APR are added as follows. For every pixel p ∈ r, an

arc from vp to its parent region vertex vr is added with weight Θp,r(fp = 1, fr = 0). An

arc from vr to vp is also added with weight Θp,r(fp = 0, fr = 1) (green arcs in Fig.4.4).

When a pixel p has the same label as its parent region r, none of (vp, vr) and (vr, vp) is

cut. If the pixel p is labeled as object but its parent region r is labeled as background,

then the arc (vp, vr) is cut and the penalty Θp,r(fp = 1, fr = 0) is correctly enforced.
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Similarly, if the pixel p is labeled as background but its parent region r is labeled as

object, then the arc (vr, vp) is cut and the penalty Θp,r(fp = 0, fr = 1) is correctly

enforced.

This completes the graph construction for the multi-scale object segmentation.

Fig.4.4 illustrates how GP , GR and APR are constructed. The arcs connecting source

and sink vertices are omitted to avoid clutter.

4.2.4.2 Graph construction for surface segmentation

A subgraph GS(VS, AS) is constructed for segmenting each interacting terrain-

like surface S ∈ S. For each pixel p, a vertex vSp is created in subgraph GS. The

graph-searching method ([52]) is used to add arcs within each subgraph to encode the

energy in Eq.(4.6). The idea is to construct the graph such that given any finite s-t

cut, the source set vertices are consecutive and the sink set vertices are consecutive

within each (x, y) column. Moreover, all source set vertices will always lie below the

sink set vertices in each column. Thus, the s-t cut of GS can be interpreted as the

surface segmentation using the following mapping: all source set vertices are defined

as “below” the surface and all sink set vertices are defined as “above” the surface.

S(x, y) is defined as the “highest” source set vertex in (x, y) column. We assign the

arc weight carefully so that the cut capacity of any finite s-t cut encodes the on-

surface cost in Eq.(4.6). As a result, by computing a minimum s-t cut, we get a

surface segmentation which minimizes the on-surface cost.

More specifically, three types of arcs are added:
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1SG
0z =

1z Z= −......

(x, y)
1SG

(x+1, y)

2x∆ =

(a) interacting surface seg-
mentation subgraph GS

min 1d =

1SG PG
0z =

1z Z= −......

sink vertex

(x, y) (x, y)

1PSA

(b) surface-object interac-
tion arcs APS

2PSA1PSA

1SG
2SGPG

(c) pixel layer subgraph Gp and two interacting
terrain-like surface subgraphs GS1 and GS2

Figure 4.5: Segmenting interacting surface and enforcing surface-object interaction

prior. (a) demonstrates the surface segmentation graph GS1 for segmenting surface

S1. Black arcs are intra-column arcs enforcing the terrain-like topology of the sur-

face. Brown arcs are inter-column arcs enforcing a smoothness constraint of 2 voxels

between (x, y)-column and (x + 1, y)-column. (b) demonstrates the surface-object

interaction arcs APS1 enforcing a minimum surface-object distance of 1 voxel. (c)

shows how the pixel layer subgraph GP (for segmenting the target object), interacts

with two terrain-like surface segmentation subgraphs GS1 and GS2 .
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1). intra-column arcs which enforce the monotonicity/terrain-like topology of

the surface. Infinite weighted arcs are added from vSp(x,y,z+1) to vSq(x,y,z) for 0 ≤ z <

Z − 1 (black arcs in Fig.4.5a). These arcs make sure that all source set vertices must

lie below all sink set vertices within each column.

2). inter-column arcs which enforce the smoothness constraint between adja-

cent (x, y)-column and (x′, y′)-column. Infinite weighted arcs from vSp(x,y,z) to vSq(x′,y′,max (0,z−∆))

for all 0 ≤ z ≤ Z − 1, where ∆ is the smoothness constraint between (x, y)-column

and (x′, y′)-column (either ∆x or ∆y, depending on the neighboring relationship be-

tween (x, y) and (x′, y′)). Brown arcs in Fig.4.5a enforces the smoothness constraint

that |S(x, y) − S(x + 1, y)| ≤ ∆x = 2. If |S(x, y) − S(x + 1, y)| > ∆x, then at least

one of these inter-column arcs will be in the s-t cut. But all inter-column arcs have

infinite weight, thus such an s-t cut cannot be an optimal solution due to its infinite

s-t cut capacity.

3). source-sink arcs which encode the on-surface cost of all pixels. For pixel

p(x, y, z), 0 < z ≤ Z−1, we add arc from source s to vSp with weight max (−cp(x,y,z) + cp(x,y,z−1), 0),

and an arc from vSp to sink t with weight max (cp(x,y,z) − cp(x,y,z−1), 0). For every bot-

tom pixel p(x, y, 0), an arc from source s to vSp is added with infinite weight to make

sure the bottom pixel at each (x, y) column is in the source set. Otherwise, we may

result in one column whose vertices are all in the sink set, which is a trivial solution

that should be avoided. Suppose (C,C) is one s-t cut of GS with C as the source set,

and wp = cp(x,y,z)− cp(x,y,z−1). Then the arcs (s, vSp ), vSp ∈ C and (vSp , t), v
S
p ∈ C are in
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the cut. The s-t cut capacity is

−
∑
wp<0,

vSp ∈C

wp +
∑
wp≥0,

vSp ∈C

0 +
∑
wp<0,

vSp ∈C

0 +
∑
wp≥0,

vSp ∈C

wp (4.8)

=−
∑
wp<0,

vSp ∈C

wp + (−
∑
wp<0,

vSp ∈C

wp +
∑
wp<0,

vSp ∈C

wp) +
∑
wp≥0,

vSp ∈C

wp (4.9)

=−
∑
wp<0

wp +
∑
vSp ∈C

wp (4.10)

Note the first term −
∑

wp<0 wp is a constant for all s-t cuts. The second term∑
vSp ∈C

wp =
∑

p∈S cp, which is the sum of original on-surface costs. Thus, we have

encoded the on-surface cost correctly with the s-t cut capacity.

Fig.4.5a shows how the surface segmentation subgraph GS is constructed. The

source-sink arcs are omitted to avoid clutter.

4.2.4.3 Graph construction for surface-object interaction

To enforce the surface-object interaction term (Eq.(4.7)), a set of arcs APS is

added between the pixel-wise object segmentation subgraph GP and each interacting

surface segmentation subgraph GS, S ∈ S. Fig.4.5c shows how APS is added when

the target object is interacting with two terrain-like surfaces.

For every pixel p(x, y, z), 0 ≤ z < Z − dmin, we add an arc from vp ∈ GP

to vSq ∈ GS with q(x, y,max (0, z + dmin)). For every pixel p(x, y, z), z ≥ Z − dmin,

we add an arc from vp ∈ GP to sink vertex t. In both cases, the arc carries weight

ΦS
p (fp = 1). Fig.4.5b shows how APS is constructed.
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To verify that the construction correctly encodes the surface-object interaction,

one can check that the arc (vp(x,y,z), v
S
q(x,y,z+dmin)) is in the s-t cut if there exists some

object voxel violating the minimum surface-object distance constraint (p(x, y, z), fp =

1 with z > S(x, y) − dmin). Because vp(x,y,z) is in the source set since fp = 1, and

vSq(x,y,z+dmin) is in the sink set since S(x, y) < z + dmin and all vertices above S(x, y)

belongs to the sink set. In this case, the penalty ΦS
p (fp = 1) is correctly enforced.

Note the pixel layer subgraph GS is invariant to the topology of target object.

Thus, we are free to flip and rotate the image to reduce every surface-object interaction

situation to the case where the object is below the z-terrain-like surface with at least

dmin distance. This preprocessing does not cause conflict when we have multiple

interacting surfaces with different directions.

4.3 Experiment

We assessed the performance of the proposed method on the application of

primary lung tumor segmentation in Mega-Voltage Cone-Beam CT (MVCBCT). This

application is challenging because of the poor image quality (high noise), similar

intensity profiles of tumor and normal tissue, and the adjacency of tumor and lung

boundary. This increases the likelihood of tumor segmentation leaking into tissues

outside lung(see Fig.4.9e for a segmentation by the traditional graph-cut method).

4.3.1 Data

Thirty-eight volumetric MVCBCT datasets gathered under IRB approval (IRB

#200707726) at the University of Iowa were used to evaluate the performance of the
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proposed method. The datasets were acquired from three patients with non-small

cell lung cancer over eight weeks of radiation therapy. To be more specific, a total

of 20 MVCBCT scans were obtained. Each scan contained one full-inhalation phase

and one full-exhalation phase volumetric image. Two out of the 40 volumetric images

were rejected by experts due to poor image quality prior to any work proposed here.

Our experiment was conducted on the remaining 38 volumetric images. Each image

contained 128× 128× 128 voxels with voxel size of 1.07× 1.07× 1.07× mm3. Manual

tracings of lung tumors were obtained from experts and were used as the reference

standard when assessing the performance of the proposed approach.

4.3.2 Experiment settings

The proposed approach advocates two novel features: incorporating surface-

object interaction priors, and using multi-scale information instead of just pixel-wise

information. To assess the contributions to the performance of each feature, four

groups of experiments were conducted: 1). Traditional graph-cut segmentation (de-

noted as ‘GC’); 2). Graph-cut segmentation with surface-object interaction but with-

out the multi-scale information (denoted as ‘TS’); 3). Multi-scale graph-cut segmen-

tation without surface-object interaction (denoted as ‘MS’); 4). Multi-scale segmen-

tation with surface-object interaction (denoted as ‘TS+MS’).

The segmentation performance was assessed using two metrics: Dice similarity

coefficient (DSC) and the average symmetric surface distance (ASSD). The Dice sim-

ilarity coefficient is used to measure how well two volumes overlap with each other.
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Assume A and B are two volumes, then the DSC between the two volumes is defined

as 2|A ∩ B|/(|A| + |B|), which ranges between 0 and 1. The larger the DSC is, the

better the two volumes are aligned, with 1 indicating a perfect overlapping.

The average symmetric surface distance (ASSD) is used to measure how close

two segmented surfaces are. Let d(x,A) denote the shortest distance between a point

x and any point on the surface A. The ASSD between the segmented boundary

surfaces A and B by two different methods is defined in Eq.(4.11). It measures the

average distance from any point on a contour/surface to the other contour/surface.

The ASSD metric has a range of [0,+∞]. The smaller ASSD is, the better the two

segmented surfaces/contours agree with each other. If ASSD = 0, then the two

segmentations are identical.

ASSD =

∑
a∈A d(a,B) +

∑
b∈B d(b, A)

|A|+ |B|
(4.11)

We report the DSC’s and ASSD’s between the manually traced tumor contours

and the segmentations returned by GC, TS, MS and TS+MS. A two-tailed student

t-test was conducted between every pair of methods. A p-value smaller than 0.05 is

considered statistically significantly different.

4.3.3 Initialization

We used the same initialization approach used in [85]. The user manually

specified two concentric spheres, such that all pixels within the small sphere belongs

to the object, and all pixels outside the large sphere belongs to the background. The
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(a) input image (b) initialization

1S

2S

O

(c) interacting surfaces

Figure 4.6: Manual initialization. Two inputs are required: two spheres serving as

object and background seeds (as in (b), and the surface-object interaction relationship

(as in (c). The surface-object interaction relation includes the number of interacting

surfaces, the direction of surfaces and whether the surface is above or below the

object. No manual contour is required for neither object or interacting surfaces, since

all of them will be simultaneously segmented by the proposed method.

segmentation was then conducted in the bounding box of the large sphere. Fig.4.6b

shows one such example.

The interacting surfaces to be segmented anatomically corresponds to the lung

boundary. We only require the user to specify the surface-object interaction rela-

tionship, including the number of interacting surfaces, the direction of surfaces, and

whether the surface is above or below the object (Fig.4.6c). The surface-object in-

teraction relationship is determined by visually inspecting the relative proximity of

the tumor and lung boundary. No surface contours need to be manually drawn, since

they will be simultaneously segmented by the proposed algorithm. The number of

terrain-like surfaces segmented by ‘TS’ and ‘TS+MS’ methods ranges from two to

three. The same set of surfaces are segmented by ‘TS’ and ‘TS+MS’ methods on

each dataset.
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4.3.4 Energy term design and parameter settings

The pixel layer data term is designed as follows. For pixels outside the large

sphere, Dp(fp = 1) =∞, Dp(fp = 0) = 0 to enforce the hard constraint that they are

all background pixels. For pixels inside the small sphere, Dp(fp = 1) = 0, Dp(fp =

0) =∞ to enforce the hard constraint that all pixels within the small sphere are object

pixels. For pixels between the two spheres, we first estimate the mean object pixel

intensity Īob and the standard deviation of object pixel intensities σ̄ob from all pixels

within the small sphere. Assuming the object pixel intensities can be described by

a Gaussian distribution, we compute Dp(fp = 1) = − log Pr(Ip|fp = 1) ∝ exp(‖Ip −

Īob‖2/2σ̄2
ob), and Dp(fp = 0) = − log(1 − Pr(Ip|fp = 1)) = − log(1 − exp(−Dp(fp =

1))).

The pixel layer smoothness term is designed as follows. Vpq(fp, fq) = wPpq if

fp 6= fq, in which wPpq ∝ exp(−‖Ip − Iq‖2/σ2
P ). This smoothness term is small when

neighboring pixels have very different intensities, which indicates an edge between

two pixels.

We applied the watershed method to generate the over-segmentation ([76]).

Two regions are defined to be neighboring if the Euclidean distance between cen-

troids of the two regions is within 10 mm. The region layer data term is computed

as the mean value of its children pixel data term. Dr(fr = 1) =
∑

p∈rDp(fp = 1)/|r|

and Dr(fr = 0) =
∑

p∈rDp(fp = 0)/|r|. The region layer smoothness term is de-

fined similar to the pixel smoothness term: Vr1,r2(fr1 , fr2) = wRr1,r2 , in which wRr1,r2 ∝

exp(‖Dr1(fr1 = 1)−Dr2(fr2 = 1))‖2/σ2
R.
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The variance parameters for the pixel and region smoothness terms are empir-

ically set to σP = 7, σR = 1000. The weighting coefficients for the pixel layer term,

the region layer term and the surface segmentation term are set as follows: ηP = 1,

ηR = 0.4, ηS = 1000 for all surfaces. The surface smoothness constraint for all sur-

faces are set to be 1 voxel along all direction. The minimum distance between the

target object and all surfaces are set to be dmin = 0, i.e., the object does not cross

any of the auxiliary surfaces. All datasets share the same parameter setting.

4.3.5 Results
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Figure 4.7: Quantitative DSC and ASSD results of four methods: Graph-cut without

interacting surface segmentation (GC), Graph-cut with terrain-surface segmentation

(TS), multi-scale segmentation without surface segmentation (MS), and multi-scale

segmentation with terrain-surface segmentation (TS+MS). Mean value and standard

deviation are shown in the figure.

The quantitative results are summarized in Fig.4.7. By using multi-scale seg-

mentation alone (MS) or incorporating surface-object interaction priors alone (TS),

we were able to achieve similar accuracy improvement over using traditional graph-cut

(GC). By combining the multi-scale method with the interacting surfaces segmenta-
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Figure 4.8: Quantitative DSC and ASSD results (dataset by dataset). (Best view

in color.) We can see that MS+TS achieves consistently accurate result among all

datasets, which utilizes both surface-object interaction prior and the multi-scale in-

formation of the target object.



www.manaraa.com

106

tion (TS+MS), the segmentation accuracy was further improved.

The t-tests on DSC’s show that: a). the difference between TS and GC, and

the difference between MS and GC are both statistically significant; b). the differ-

ence between TS+MS and MS, and the difference between TS+MS and TS are both

statistically significant. The t-test on ASSD shows the same statistical significance

result as DSC.

This shows that the segmentation accuracy is improved by incorporating ei-

ther surface-object interaction prior or multi-scale information of the target object.

The best segmentation accuracy is achieved when utilizing both the surface-object

interaction and multi-scale information.

The dataset-by-dataset quantitative results are given in Fig.4.8. More con-

sistent and accurate segmentation is achieved by incorporating the surface-object

interaction prior and the multi-scale information of the target object.

Qualitative results are shown in Fig.4.9. Due to the weak boundary and similar

intensity profiles of tumor and surrounding tissues, the traditional graph-cut method

produced unsatisfying segmentation (Fig.4.9e). By simultaneously segmenting two

terrain-like surfaces together with the tumor, we were able to prevent a large amount

of segmentation leakage (Fig.4.9f). But there was still some leakage on the right

part of the image. Note there is no clear terrain-like boundary surface on the right

side of the tumor. Thus, the leakage problem in Fig.4.9f may not be resolved by

incorporating an extra terrain-like surface. By using multi-scale segmentation (MS),

we are able to take advantage of the long range neighborhood in the region layer,
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which helps differentiate tumors from lung tissues. We can see the segmentation in

Fig.4.9g is much better than that in Fig.4.9e. But there is still some leakage at the

left part in Fig.4.9g. By incorporating the surface-object interaction priors (TS+MS),

the leakage problem in Fig.4.9g is prevented and the segmentation aligns well with

manual contour (Fig.4.9h).

The visualization of a tumor segmentation and the two interacting surfaces

segmentation are shown in Fig.4.9i. Note one of the two surfaces is only shown as

a 2D contour, since this surface blocks the view of the tumor if visualized as a 3D

surface.

Generating the segmentation for each dataset requires 9 minutes on average.

This includes 2 minutes for user to specify the two spheres as discussed in Sec.4.3.3,

and 7 minutes for the algorithm to run on a Linux workstation (2.8GHz, 256GB

memory).

4.4 Discussion

4.4.1 Novelty of the proposed method

[85] enforced the surface-object interaction along the z-direction (both above

and below the z-terrain like surface). In this work, we generalize our previous segmen-

tation method ([85]) to handle multiple terrain-like surfaces along different directions

and further incorporate the multi-scale segmentation scheme into a single optimiza-

tion process. Our method can achieve a globally optimal segmentation solution with

respect to the objective function in low-order polynomial time by solving a maximum
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(a) original (b) initialization (c) over-segmentation (d) manual contour

(e) GC (f) TS (g) MS (h) TS+MS (i) TS+MS 3D

Figure 4.9: Illustrative result. Red contours in (d), (e), (f), (g), (h) and (i) are manual

tracings by an expert, i.e., the reference standard. Blue contours in (e), (f), (g), (h)

and (i) are the semi-automatic segmentations generated by different methods. As

shown in (f), incorporating surface-object interaction prior information prevents lots

of “leakage” as in (e). Further including multi-scale information achieves even more

accurate segmentation, as in (h), (i).
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flow problem. Our approach results in a novel integration of the traditional graph-cut

method [12] and the graph searching method ([52]).

[44] studied the multi-scale segmentation problem and also modeled it as a

graph representation with two layered subgraphs – a region layer and a voxel layer,

as in our proposed method (Sec.4.2.1). However, our method differs from their work in

the following aspects. First, the region layer in [44] is fully connected. This is feasible

for 2D images, but is computationally prohibitive for 3D images, which may easily

contain over 10,000 segments in an over-segmentation. On the contrary, our algorithm

only connects nodes within a limited neighborhood. Second, the approach in [44]

needs to solve a random walk with restart (RWR) problem. To solve it exactly, either

a quadratic space and cubic pre-computation time, or a slow response time on queries

is needed ([94]). The optimization approach cannot guarantee the global optimality.

In contrast, our approach reduces the problem to a maximum flow problem in a sparse

graph with only O(M |V |) arcs, where M is the maximum number of neighboring

regions for any region r ∈ R. This problem can be solved efficiently in O(M |V |2)

time with a globally optimal solution ([65]).

4.4.2 Importance of simultaneous multi-scale segmentation

The benefits of including the region layer is two-folds: first, the region layer

includes some aggregate information which is not obvious/available in the pixel layer.

For example, if the pixel intensity changes gradually in the pixel layer, then it’s hard

to locate a clear edge. But the mean intensity of two adjacent over-segmented regions
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may reveal the gradual intensity change trend more easily.

Second, the region layer helps propagate long-range information. Obviously

children pixels of the same region are connected to the same region vertex in the

graph, even if they are not neighbors according to the neighborhood setting in the

3D image. Furthermore, the region vertices are also connected to each other within

a relatively large neighborhood. This helps further propagate local information to

far-away locations, which helps discriminate the target more easily.

In contrary to most multi-scale techniques which process different scales se-

quentially ([51, 59, 77]), our method processes the coarse level and the fine level si-

multaneously. While processing different scales sequentially can reduce running time

and memory consumption, we cannot expect the segmentation accuracy to improve

in general. Processing different scales simultaneously, on the other hand, can achieve

better accuracy by allowing coarse level information and fine level information to

propagate in both directions ([43, 21]).

4.4.3 Limitations

One limitation of our method is that the running time and memory consump-

tion is increased due to the simultaneous processing of two object segmentation sub-

graphs at different scales. Instead of sequentially processing the coarse level and fine

level for object segmentation, we process two levels simultaneously. Although the

segmentation accuracy is improved, this also makes the graph size larger and the

running time longer.
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4.5 Conclusion

We proposed a novel segmentation method which simultaneously segments

topologically flexible object and multiple interacting adjacent surfaces with know

topologies. The topologically flexible object is segmented via graph cut ([12]). While

the interacting surfaces with known topologies are segmented via graph searching

([52]). A multi-scale approach is also incorporated to boost the target object segmen-

tation performance. Region-wise information from a data-driven over-segmentation

of the image is utilized in the multi-scale segmentation. The problem is reduced to

an MRF energy minimization problem, which could be efficiently and exactly solved

by computing a single minimum s-t cut in an appropriately constructed graph. The

proposed method’s performance is assessed on 38 MVCBCT datasets to segment pri-

mary lung tumors. By incorporating the surface-object interaction prior and the

multi-scale information, the proposed method segments lung tumors more accurately

and robustly in the challenging datasets.



www.manaraa.com

112

CHAPTER 5
4D CT-PET CO-SEGMENTATION

Four-dimensional CT scans provides valuable motion information of patient

throughout different respiratory phases. PET, on the other hand, provides functional

information about tumor, which differentiate tumor from normal tissue effectively.

However, manually contouring structures of interest on 4D CT is prohibitively tedious

due to the large amount of data. We propose an automatic method to segment lung

tumor simultaneously for 4D CT scans in all phases and PET scan. The problem

is modeled as an optimization problem based on Markov Random Fields (MRF)

which involves region, boundary terms and a regularization term between PET and

CT scans. The problem is solved optimally by computing a single max flow in a

properly constructed graph. As far as the authors know, this is the first work in

simultaneously segmenting tumor in 4D CT while incorporating PET information.

Experiments on 3 lung cancer patients are conducted. The average Dice coefficient is

improved from 0.680 to 0.791 compared to segmenting tumor volume in 4D CT phase

by phase without incorporating PET information. The proposed method is efficient

in terms of running time since the method only requires computing a max flow for

which efficient algorithm exists. The memory consumption is linearly scalable with

respect to number of 4D CT phases, which enables our method to handle multiple

4D CT phases with reasonable memory consumption.
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5.1 Introduction

Four-dimensional CT scans are acquired by obtaining multiple CT scans at

different stage/phase of patient respiratory cycle. The respiratory cycle is divided into

a number of breathing phases–one phase at the end of inspiration, another phase at

the end of expiration and several evenly distributed phases in between. Compared to

traditional free-breathing CT scan, 4D CT scans provide valuable motion information

which could help reduce late complications resulting from overdoes to critical organs

and deliver higher level of does to targets to improve tumor control when taken into

account of treatment planning[71].

Although the prohibitive huge amount of data in 4D CT made its automatic

segmentation urget, few literatures were reported in this area. Weiss et al. investi-

gated temporospatial variations of tumor and normal tissue during inspiration in lung

cancer patients[103]. But they used manually defined contours. You et al. proposed a

semi-automatic segmentation method which propagates the contour which is defined

on a 3D CT scan to all the other phases by using principal surfaces[111]. Ehrhardt

et al. presents a variational approach for simultaneous segmentation and registration

applied to temporal image sequences[27]. The variational approach uses numerical

method to minimize a cost function that combines intensity-based registration, level-

set segmentation as well as prior shape and intensity knowledge. But the numerical

method may suffer from roundoff errors and may not converge to the global minimum.

All the automatic methods above did not incorporate PET information.

Co-segmentation of PET-CT pairs recently attracts attention among researchers.
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Han et al. presents a globally optimal tumor segmentation in PET-CT images[36].

They formulate the problem as a Markov Random Field (MRF) based segmentation

with a regularization term that penalizes the segmentation difference between PET

and CT. The solution is globally optimal and can be obtained in low-order polyno-

mial time by computing a single max flow. But their paper only illustrates their

co-segmentation method on PET and single CT scan.

5.2 Methods

Our method borrows the idea from Han’s method[36]. First PET and the CT

in one specific phase is registered. Then we build a subgraph for PET and CT in

each phase. A context term is introduced in the graph-cut framework which penalizes

the segmentation difference between PET and CT. By solving a single max-flow in

this graph, we can optimally obtain different segmentation for PET and CT in each

phase in terms of a MRF energy function. The regularization term makes sure the

CT segmentation result in each phase incorporates information from the PET and

vice, versa.

5.2.1 Registration between PET and CT

A registration of PET and CT in a specific phase is performed. The PET is

upsampled using a cubic B-spline interpolation so that the PET will have the same

resolution as CT. The idea is that the registered PET and CT should have a one-

to-one spatial correspondence for each voxel pair. The phase of CT on which the

registration is performed should be more or less the “average” of all the CT phases
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in terms of tumor location and shape. No registration between different phases of

CT is performed. Instead of relying on fusion of CT images, we rely on our method’s

ability to generate different segmentations for PET and CT to account for the motion

of tumor in different respiratory phases.

5.2.2 Problem formulation

The segmentation problem is formulated as a Markov Random Field (MRF)

problem described in Eq.(5.1). Minimizing the energy will return the segmentation

result.

EPET−CT = EP (fP ) +
K∑
i=1

Ei
C(f iC) +

K∑
i=1

Ei
P−C(fP , f

i
C) (5.1)

K is the number of phases contained in 4D CT. fP is the vector of binary

labeling (‘object’ vs. ‘background’) of PET pixels, which defines the segmentation of

PET image. f iC , 1 ≤ i ≤ K is the vector of binary labeling of pixels in the i-th CT

image, which defines the segmentation of CT in the i-th phase. EP (fP ) is defined as

a typical graph-cut energy function consisting of region and boundary term for PET

image.

EP (fP ) =
∑
u∈IP

du(fu) +
∑

(u,v)∈NP

wu,v(fu, fv) (5.2)

IP is the set of all pixels in PET image. NP is the set of all neighboring

pixel pairs in PET image. du(fu) is the region term for assigning label fu to pixel

u. wu,v(fu, fv) is the boundary penalty for assigning label fu, fv to neighboring pixels
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u, v. Similarly, the energy for the CT scan in the i-th phase Ei
C(f iC) consists of a

region term diu′(f
i
u′) and a boundary term wiu′,v′(f

i
u′ , f

i
v′):

Ei
C(f iC) =

∑
u′∈IiC

diu′(f
i
u′) +

∑
(u′,v′)∈N iC

wiu′,v′(f
i
u′ , f

i
v′) (5.3)

The regularization term Ei
P−C(fp, f

i
C) is defined to penalize the segmentation

difference between PET and CT.

Ei
P−C(fP , f

i
C) =

∑
u∈IP ,u′∈IiC

γiu,u′(fu, fu′) (5.4)

γiu,u′(fu, fu′) =


0 if fu = fu′

ϕu,u′ otherwise

(5.5)

in which u and u′ are pixels with the same spatial coordinates but in different images.

When u and u′ are labeled with the same label (fu = fv), there is no penalty intro-

duced. In this case, the PET and CT information agree with each other for voxel

pair u and u′. If the labels for u and u′ are different (fu 6= fv), then the PET and CT

information disagrees with each other for voxel pair u and u′. A penalty ϕu,u′ is paid

for the difference between labeling of u and u′. This penalty term encourages CT

segmentation to agree with the PET segmentation. However, the proposed method

does allow different segmentation between PET and CT, as long as the penalty is

paid for each differently-labeled voxel pair u and u′ in PET and CT.
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5.2.3 Graph construction

The energy term for PET Ep(fP ) and each phased CT Ei
C(f iC), 1 ≤ i ≤ K

can be encoded using standard graph-cut framework. To be more specific, for PET

scan and each CT scan in different phases, we build a subgraph which itself is built

using Boykov’s graph-cut framework[12]. Fig.5.1a shows how such a subgraph is

built. Assume the PET energy term in Eq.(5.2) is being encoded by a subgraph

GP = {VP ∪ {s, t}, AP}. For each voxel u in the image, we create a vertex in the

graph. Here we abuse the notation to denote the vertex corresponding to voxel u also

as vertex u. A dummy source node s and a sink node t are also introduced.

For every vertex u ∈ VP , we introduce an arc from source s to itself, (s, u)

with arc weight Du(fu = ‘bg′), which is the region term penalty for assigning voxel u

as background. For every vertex u ∈ VP , we also introduce an arc from itself to sink

t, (u, t) with arc weight Du(fu = ‘ob′), which is the region term for assigning voxel u

as object/tumor. The red and blue arcs in Fig.5.1a shows such arcs. For every pair of

neighboring voxel u and v, two arcs (u, v) and (v, u) with weights wu,v(fu = ‘ob′, fv =

‘bg′) and wu,v(fu = ‘bg′, fv = ‘ob′) are introduced to enforce the boundary term in

Eq.(5.2). The black double-arrowed arcs in Fig.5.1a show the two arcs for every pair

of neighboring voxels. For each CT scan in different phases, such a subgraph is built

to encode the CT energy term in Eq.(5.3).

The regularization terms exist between PET image and each CT image in

different phases. For every node u in the PET image IP , an arc is added from u to ui

(u and ui have the same spatial coordinates) in the CT image I iC for the i-th phase.
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An arc is also added from ui to u. Both arcs carry the same penalizing weight ϕu,ui

for the segmentation difference between PET and CT in the i-th phase. Fig.5.1b

shows the graph building for the regularization term.

Solving a max flow in the constructed graph will return the optimal segmen-

tation result in terms of the energy function in Eq.(5.1), as described by Boykov et

al.[12]. Due to the regularization term, the segmentation result of CT in all phases

incorporate the information of PET.

s

t

u v

(a) subgraph construction

...

u

1u 2u Ku
(b) regularization arcs between PET and each CT
phase

Figure 5.1: Graph construction for encoding the MRF problem. a shows how the

graph is built for PET and each CT phase. The red and blue arcs are used to enforce

the region term and the black arcs are used to enforce the boundary term. b shows

the regularization arcs between every voxel in PET and its corresponding voxel in

each CT in different phase.

5.3 Experiments

5.3.1 Experiment settings

Three PET-4D-CT scan pairs obtained from three different patients with lung

cancer are used in the experiment. The free-breathing PET images have 168×168

voxels in each slice. The number of slices varies from 313 to 487. The voxel spac-



www.manaraa.com

119

ing is 3.39×3.39×2.03 mm for all PET scans. Two 4D-CT datasets consist of 10

phases: 0EX, 20EX, 20IN, 40EX, 40IN, 60EX, 60IN, 80EX, 80IN, 100IN. For these

two patients, the number of slices for each phase varies from 141 to 145. One 4D CT

dataset contains one extra phase 0IN besides the above 10 phases. For this patient,

the number of slices varies from 238 to 244 for each phase. Each CT slice of the 3

patients has 512×512 voxels. The voxel spacing for the 3 patients is 0.98×0.98×2 mm

for all CT scans. Contours of tumor in each phase are drawn on the corresponding

CT scans by clinical physician.

For the first 2 subject, CT in phase 0%EX is used as reference phase when

registering PET. For the third subject, CT in phase 100%IN is used when registering

PET. As with every graph-cut based method, object and background seed have to

be specified. To relieve the manual labor burden, we use the initialization method

used by Song et al.[84] The user needs to specify one center voxel and two radii. The

sphere defined by the center voxel and the smaller radius specifies the object seed,

which means all voxels within the sphere must be labeled as ‘object’ (tumor in our

application). The sphere defined by the center voxel and the bigger radius specifies

the background seed, which means all voxels outside the sphere must be labeled as

‘background’. The seed could be specified on PET and CT in every phase. However,

for simplicity, in this experiment, we only specify one set of seed and use them on

PET and CT in every phase.

Assuming the intensities of the object follows a Gaussian distribution, the

region term cost for PET and CT images are calculated by fitting the Gaussian
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model generated from the object seed voxels[84], which are voxels within the sphere

with the smaller radius in the seed initialization. The boundary term is simply the

gradient in each image.

5.3.2 Regularization term design

The regularization term ϕu,u′ is generated based on the “similarity” of voxel

pairs in PET and CT in each phase. First the region term for PET and CT in each

phase are computed as described before. Then all the object region terms within

each image is normalized from 0 to 255. The absolute value of difference between

the normalized object region term for PET and the normalized object region term

for CT in a specific phase is scaled by a linear transformation (Eq.(5.6)) and used

as the regularization term. More specifically, assume u and u′ are a pair of voxels

with the same spatial coordinates in PET and the CT in i-th phase. The normalized

object region term for u is du(fu = ‘ob′) and the normalized object region term for ui

is diu′(f
i
u′ = ‘ob′), then the regularization term is defined as

ϕu,u′ = η · (255− |du(fu = ‘ob′)− diu′(f iu′ = ‘ob′)|) (5.6)

in which η is a constant which is set to 5 in this experiment. The rationale

behind this design is that if the object region term for PET and for CT have similar

values, then we should pay a high penalty if this voxel pair turns out to have different

labels. Because they are similar according to the object region term values, and thus

are encouraged to have the same labeling.



www.manaraa.com

121

5.3.3 Validation

Dice Similarity Coefficient (DSC) is used to validate the proposed approach.

DSC between two volumes X and Y are computed according to Eq.(5.7). The seg-

mentation of tumor volume on CT in each phase is compared to the expert manual

delineation of the tumor volume on CT in each phase.

DSC =
2|X ∩ Y |
|X|+ |Y |

(5.7)

We also present the segmentation results by graph-cut segmentation using

CT only, without PET information. Besides the regularization term, the CT-only

method has the same setup with the proposed co-segmentation method. DSC for

both CT-only and the proposed PET-4D-CT co-segmentation methods are presented

and compared.
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Figure 5.2: Dice coefficient for 3 subjects in each 4D CT phase.
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5.3.4 Results

The DSC for CT segmentation in all phases are shown in Table.5.1. As the

bolded numbers indicate, the average Dice coefficient is increased by using both PET

and CT information instead of using CT only. Overall, DSC increases from 0.680

to 0.791. Fig.5.2 illustrates the results more intuitively. The DSC for PET-4D-CT

co-segmentation is more stable than using CT only. For example, the DSC using

CT only for the segmentation of 0EX phase of subject 3 is only 0.351. With the

guidance of PET, the DSC is increased to 0.910. Fig.5.3 shows the segmentation of

this phase. Using CT only, the segmentation “leaks” into the adjacent normal tissue

(Fig.5.3d,5.3h). With the guidance of PET, the segmentation conforms to the tumor

volume (Fig.5.3e5.3i).

(a) PET

P
h
as

e
0E

X

(b) CT (c) expert (d) CT-only (e) co-seg

P
h
as

e
20

IN

(f) CT (g) expert (h) CT-only (i) co-seg

Figure 5.3: Illustrative results of phase 0EX and phase 20IN of subject 3. Note the

guidance of PET prevents the segmentation from leaking into the adjacent normal

tissues.
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Table 5.1: Dice coefficient for each subject.

phase CT-alone co-seg

0EX 0.322 0.639

20EX 0.567 0.639

20IN 0.323 0.666

40EX 0.330 0.660

40IN 0.354 0.666

60EX 0.339 0.643

60IN 0.312 0.643

80EX 0.560 0.644

80IN 0.557 0.643

100IN 0.556 0.643

Average 0.422 0.649

(a). subject 1

phase CT-alone co-seg

0EX 0.879 0.885

20EX 0.875 0.856

20IN 0.816 0.800

40EX 0.872 0.844

40IN 0.871 0.847

60EX 0.869 0.850

60IN 0.833 0.805

80EX 0.684 0.808

80IN 0.819 0.810

100IN 0.696 0.783

Average 0.821 0.829

(b). subject 2

phase CT-alone co-seg

0EX 0.351 0.910

0IN 0.913 0.911

20EX 0.903 0.905

20IN 0.346 0.893

40EX 0.896 0.896

40IN 0.881 0.874

60EX 0.897 0.894

60IN 0.897 0.894

80EX 0.885 0.881

80IN 0.880 0.881

100IN 0.913 0.899

average 0.797 0.893

(c). subject 3
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5.4 Discussion

We borrow the idea of incorporating a regularization term to combine PET

and CT information in the segmentation from Han’s work[36]. However, Han’s work

only generates one set of contour in spite of the fact that both PET and CT images,

from which different parts of the tumor might be shown, are given. For the 4D-CT

data, the fact that the tumor volume is different from different phases is especially

important. The most significant novelty of our regularization term is that it allows

different segmentation in CT and PET. This property is due to the fact that the

regularization penalty in Eq.(5.6) is finite and limited. While encouraging the CT

segmentation to agree with PET segmentation, the regularization term does allow

different segmentations between PET and CT. As long as such difference will result

in a smaller overall energy after paying the regularization penalty, the segmentation

between PET and CT can be different.

The ability to generate different segmentation between PET and CT explains

why the proposed method works even when CT scans in different phases are not

registered in this preliminary experiment. The tumor volume difference in different

phases caused by the respiratory motion could be dealt with by our method when the

difference is within a certain range.

5.5 Conclusion

We propose an automated co-segmentation method which simultaneously seg-

ments lung tumor in free-breathing PET and multiple 4D CT phases. The method for-
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mulates the problem as a MRF optimization problem with PET/CT region/boundary

terms and PET/CT regularization term which penalize the segmentation difference

between PET and CT. The optimization problem is solved exactly by computing a

single max flow, for which efficient algorithm exists. This method’s memory consump-

tion is linearly scalable in terms of number of CT phases, which makes the memory

consumption reasonable. As far as the authors know, this is the first work to ad-

dress the simultaneous segmentation of 4D CT and PET. The experiments show that

the proposed method is promising in improving the segmentation accuracy of tumor

volume in each respiratory phase.
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CHAPTER 6
COMBINING LOCATION AND INTENSITY PET-CT CONTEXT IN

TUMOR CO-SEGMENTATION

Tumor segmentation utilizing both PET and CT scans is advantageous since

it combines the functional information from PET and the structural information

from CT. Although multiple methods have been proposed for tumor co-segmentation,

most of them are relying solely on intensity difference between pairs of corresponding

PET and CT voxels to regularize the segmentation difference between two different

modalities.

We propose to incorporate a novel geometrical location context term into tu-

mor co-segmentation. One the one hand, the proposed location context prior makes

co-segmentation more flexible by lowering the penalty for PET-CT segmentation dif-

ferences around PET uptake region boundaries, i.e., where most PET and CT seg-

mentation differences are expected. On the other hand, it guarantees effective infor-

mation propagation between PET and CT by maintaining high context prior penalty

throughout other part of the image.

The proposed context term is validated on 44 PET-CT pairs from non-small

cell lung cancer patients. By incorporating the proposed location context term, the

Dice coefficient is improved from 0.77±0.10 to 0.79±0.09, and average symmetric

surface distance error is improved from 2.36±1.38 mm to 2.14±1.29 mm.



www.manaraa.com

127

6.1 Introduction

6.1.1 Co-segmentation and intensity context

We roughly follow the co-segmentation MRF formulation in Song et al. [83].

Suppose P and P ′ are the set of CT and PET voxels, respectively, and p ∈ P and

p′ ∈ P ′ are a pair of CT and PET voxels with the same physical coordinate. Then

the MRF formulation aims to minimize the following energy function.

E(x) =
∑
p∈P

ECT (xp) +
∑
p′∈P ′

EPET (xp′) +
∑
(p,p′)

Cp,p′ [xp 6= xp′ ] (6.1)

where xp, xp′ are variables representing segmentation results in CT and PET images.

Eq.(6.1) consists of segmentation terms for CT and PET, and the context term Cp,p′ .

The two CT and PET segmentation terms tends to generate segmentations that follow

individual image information. The context term penalizes the difference between the

two segmentations. For modality Ω ∈ {CT, PET}, the corresponding segmentation

term is defined in Eq.(6.2).

∑
q∈PΩ

EΩ(x) =
∑
q∈PΩ

DΩ(xq) +
∑

q1,q2 are neighbors

V Ω
q1q2

(xq1 , xq2) (6.2)

where DΩ is a region term reflecting how likely a voxel belongs to object/background,

and V Ω
q1q2

is a boundary term reflecting how likely an edge lies between neighboring

voxels q1 and q2.

Suppose DCT
p and DPET

p′ are normalized region terms for CT voxel p and PET

voxel p′ that share the same physical coordinate, the intensity context term is defined
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as

Cint
p,p′ = θ · (1− |DCT

p −DPET
p′ |) +K (6.3)

The more similar CT and PET region terms are, the larger the intensity context term

is. A base penalty K is enforced no matter what the difference is.

6.1.2 Location context

However, it is easy to see geometric location information also provides highly

useful information. For example, the core of highly metabolically active region is

likely to be tumor according to PET. At these locations, we would like to propagate

this information to CT so that the same CT region is also labeled as tumor. On the

other hand, at region far away from functionally active region, we would like CT to

follow the hint and label the region as background. At regions in between, especially

around the tumor boundaries, a smaller PET-CT context term is desirable to allow

different CT and PET segmentation boundaries.

In another word, the context term should be high at regions either inside, or

far away from the PET highlighting regions. Because the PET information in these

regions are reliable and worth to be propagated to CT. On the other hand, the context

term should be low around PET highlighting region boundaries. Because we expect

different tumor segmentation boundaries from CT and PET scans around here.

To measure the distance to metabolically active region, the raw PET in-

tensities is first converted into standard uptake values (SUV) [9]. We then get a
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segmentation SSUV by following the clinical practice of using SUV threshold val-

ues of 2.5 or 40%SUVmax to segment tumor region based solely from PET [63].

Then we compute the distance map of SSUV so that every voxel p has a distance

dist(p) = minq∈SSUV dist(p, q). The proposed location context term C loc
p,p′ is then de-

fined as a truncated quadratic function (Eq.(6.4)).

C loc
p,p′ = min(1, a(dist(p)− b)2 + c) (6.4)

Parameters a, b, c define a quadratic function taking dist(p) as input. Parameter

b determines at which distance we have a minimum location context. Parameter c

gives a base location context penalty, similar to base intensity context penalty K in

Eq.(6.3). Parameter a controls how wide the parabola curve should be.

6.1.3 Combining intensity and location contexts

We multiply the location context term with the traditional intensity context

term as the overal context prior ( Eq.(6.5)). This way, the location-sensitive behavior

we desired can be enforced regardless of the intensity context. This is also why we

choose multiplication, instead of addition, to combine the two terms.

Cp,p′ = Cint
p,p′ · C loc

p,p′ (6.5)

Fig.6.1 shows the overall context term generation process. On the first row of Fig.6.1,

the intensity context term is computed from the intensity difference of CT and PET

region terms. On the second row of Fig.6.1, the location context is computed from
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overall context

CT region term PET region term intensity context

PET image SUV segmentation location context

Figure 6.1: Combine intensity and location contexts as the overall context term.

a SUV highlighting region segmentation from PET scan. Note the proposed location

context is lowest at a certain distance from the SUV PET segmentation (controlled

by parameter b in Eq.(6.4)). This is the region where more differences are allowed

between CT and PET segmentation. A rough lung segmentation is also used to further

attenuate the location context term within lung area, due to the more structural

boundary information from CT within the lung area.

The two context terms are multiplied to obtain the overall context term (last

column in Fig.6.1). The new combined context term, which includes both location
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and intensity information, is used in the co-segmentation.

6.2 Experiment

6.2.1 Data

A total of 54 PET-CT scan pairs from different patients with primary non-

small cell lung cancer are obtained. The image spacing varies from 0.78×0.78×2mm3

to 1.27 × 1.27 × 3.4mm3. The intra slice image size is 512 × 512. The number of

slices varies from 112 to 293. Manual expert tracings of the primary tumor volume

is available for each scan.

The 54 scans are separated disjointly as a 10-scan training set and 44-scan

testing set. The selection procedure starts by sorting all scans according to tumor

volume. Then one scan out of every five scan is selected as training scan. This

stratified strategy makes sure the training set is representative of the whole population

in terms of tumor volume. All parameters are tuned on the training set. All reported

results are from the testing set.

6.2.2 Experiment settings

The same initialization procedure in [83] is employed. The user first specify two

concentric spheres with the different radii to serve as object and background seeds.

More specifically, all voxels inside the smaller sphere are used as object seed. All

voxels outside the larger sphere are used as background seed. To compute highlighting

SUV regions, we use max(2.5, 40%SUVmax) as the threshold to generate the SUV

highlighting region segmentation SSUV [63], where SUVmax is the maximum values
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in one SUV uptake region.

The co-segmentation is then run using only the intensity context term, and

using the combined context term with both location and intensity information. The

segmentation accuracy are measured by the Dice coefficient (DSC) and average sym-

metric surface distance (ASSD). Dice coefficient measures the volume overlap of two

segmentations A and B. It is defined as 2|A ∩ B|/(|A| + |B|), with a range of [0,1].

The higher the DSC is, the better volume overlap the two segmentations have. Av-

erage symmetric surface distance measures the surface positioning error between the

boundary surface of two segmentations. Suppose G and H are the voxels on the

boundary surfaces of segmentations A and B, respectively, then ASSD is defined as

(
∑

g∈G minh∈H dist(g, h) +
∑

h∈H ming∈G dist(g, h))/(|G| + |H|). In another word, it

is the average distance of every surface voxel of one segmentation to the other. ASSD

has a range of [0,+∞), with a smaller value correspond to better segmentation align-

ment.

6.2.3 Parameter selection

A grid search strategy is used to select the parameters in both types of context

terms. In the experiment using only the intensity context, a range of parameters θ and

K are generated. All combinations of the two parameters are tried on the training set.

The parameters returning highest training set DSC is used to run the co-segmentation

on the test set.

In the experiment using both intensity and location contexts, A range of can-
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didate values for each of (θ,K, a, b, c) are generated. All combinations are tried on

the training set. The parameters returning highest training set DSC is used to run

the co-segmentation on the test set.

6.2.4 Results

Fig.6.2 illustrate two examples of co-segmentation using only intensity context

and incorporating location context. Clearly the location context lowers the PET-CT

consistence penalty around the tumor, which happens to be where the CT segmen-

tation and PET segmentation most likely differ. From the first example (first two

rows in Fig.6.2), it is clear that enforcing a uniformly strong intensity context penalty

“clipped” the CT segmentation to miss the lower left corner. The second example

(last two rows in Fig.6.2) shows that enforcing a uniformly strong intensity-only con-

text not only degrades the CT segmentation, but also the PET segmentation. Notice

that PET segmentation in the third row, second column is missing a lower right com-

ponent compared to the fourth row, second column. This is due to the fact that

if the lower right component in PET is segmented, then the strong context term

would force the CT segmentation to have roughly the same boundary as the PET

component. But the CT boundary is quite different from the PET boundary in this

area. So the strong intensity context term forces the consensus between PET and CT

segmentations by labeling both as background at this region.

Quantitatively, Table.6.1 shows the DSC and ASSD when using only intensity

context term, and using both location and intensity contexts. By incorporating the



www.manaraa.com

134

in
te

n
si

ty
-o

n
ly

lo
ca

ti
on

-i
n
te

n
si

ty

input and manual co-seg PET context term co-seg CT

in
te

n
si

ty
-o

n
ly

lo
ca

ti
on

-i
n
te

n
si

ty

input and manual co-seg PET context term co-seg CT

Figure 6.2: Incorporating location context term leads to more flexible and accurate

segmentation. It lowers the context penalty at regions where PET and CT most likely

disagree from each other.
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Table 6.1: Co-segmentation accuracy.

context term DSC ASSD (mm)

intensity-only 0.77 ± 0.10 2.36 ± 1.38

location-intensity 0.79 ± 0.09 2.14 ± 1.29

location context, the DSC is improved from 0.77 to 0.79. The surface error ASSD

is also improved from 2.36 mm to 2.14 mm. A two-tailed paired t-test shows that

the co-segmentation accuracy using combined location and intensity context term is

statistically significantly different from just using the intensity context term (p-value

< 0.05).

6.3 Conclusion

Based on the observations that PET and CT segmentations are likely to agree

at the core or far away from the tumor, and disagree around the tumor boundary,

we propose a truncated quadratic location context term to allow more flexible co-

segmentation. The experiment on 44 testing primary lung cancer PET-CT scan pairs

demonstrates that the combined location and intensity context term leads to more

accurate co-segmentation.
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CHAPTER 7
OPTIMAL MULTI-SURFACE SEGMENTATION WITH STAR-SHAPE

PRIOR

7.1 Introduction

We present a novel graph-based optimal segmentation method which can si-

multaneously segment multiple star-shaped surfaces. Minimum and maximum sur-

face distance constraints can be enforced between different surfaces. In addition, the

segmented surfaces are ensured to be smooth by incorporating surface smoothness

constraints which limit the variation between adjacent surface voxels. A consistent

digital ray system is utilized to make sure the segmentation result is star-shaped and

consistent. The problem is formulated as an MRF optimization problem which can

be efficiently and exactly solved by computing a single min s-t cut in an appropriately

constructed graph. The adoption of the consistent digital ray system enables to make

full use of the discrete nature of the input images, and to enforce the star-shape prior

and those geometric constraints without any further interpolation. To the best of our

knowledge, the concept of consistent digital rays is for the first time introduced into

the field of medical imaging. The method is applied to the segmentation of the optic

disc and cup on 70 registered fundus and SD-OCT images from glaucoma patients.

The result shows improved accuracy by applying the proposed method (versus using

a classification-based approach).

An object is star-shaped if there exists one point (called the star center) of the

object such that for every other point in the object, the whole Euclidean ray segment



www.manaraa.com

137

between them lies within the object (Fig.7.1a). The star-shaped prior requires min-

imal prior information (only location of the star center), while allowing much shape

variation.

Veksler [97] presented a method incorporating the star-shaped prior into the

graph-cut segmentation framework [12]. However, the digital ray segments used in

this method are constructed in an ad hoc way which could lead to inconsistent segmen-

tation results (for example, the segmentation results may contain artificial ‘holes’).

To make full use of the discrete nature of the input image, we propose to adopt the

consistent digital ray system [19] to enforce the star-shaped prior.

c

p

(a)

c
jb
1jb +

(b)

Figure 7.1: (a) An example star-shaped object. (b) A consistent digital ray system

and a digital star-shaped object (pink grids). c is the star center.

Chun et al. [19] developed a method to construct a consistent digital ray

segment system for an N-D grid (image), which approximates the Euclidean ray

segments with an asymptotically optimal guarantee of Hausdorff distance between

the constructed digital ray segments and their Euclidean counterparts. A consistent

digital ray system is a spanning tree T with each vertex corresponding to exactly

one image voxel and tree edges being part of the grid topology of the input image

(Fig.7.1b). A digital ray segment dig(c, p) is defined as the unique portion of the
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halfline emanating from the star center c, with p as its second endpoint. An object

O in the image is star-shaped with respect to c if for every voxel q ∈ O, the whole

digital ray segment dig(c, q) is in the object O.

We develop a novel graph-based segmentation method which simultaneously

segments multiple star-shaped surfaces with a common star center. The problem is

formulated as a Markov Random Field (MRF) optimization problem whose energy

function consists of a region term, a boundary term and a star-shaped prior term. The

optimization problem is exactly solved in low-order polynomial time by computing a

single s-t cut/max-flow in an appropriately constructed graph. A novel feature of our

method is that the star-shaped prior is enforced with respect to a consistent digital

ray system, which makes sure that the segmentation result is consistent and visually

well approximates a Euclidean star-shaped object. In our method, no interpolation

of the input image is needed. The surface smoothness and the distance constraints

between surfaces are enforced naturally in the discrete grid space of the image. Al-

though Li et al. [52, 82] developed a novel method for simultaneously segmenting

multiple interacting surfaces, the geometric constraints are enforced in the Euclidean

space, which may require interpolation of the input image, potentially introducing

artifacts. Delong et al.[23] proposed a multi-region segmentation approach which

segments multiple interacting objects simultaneously. Their method has no control

of the target object topology. The applicability of our method is demonstrated on

the simultaneous segmentation of the optic cup and disc in fundus images.
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7.2 Methods

7.2.1 MRF Formulation of Segmentation with Star-shape Prior

The segmentation problem is formulated as an MRF energy consisting of a

region term which measures how well voxels fits into the object/background model,

a boundary term which penalizes the discontinuity between object and background

and a star-shaped prior term which enforces the star-shaped prior to the segmented

surfaces. Minimizing the energy yields the optimal segmentation with respect to the

given cost function.

Suppose we want to segment N surfaces S i ∈ LN = {0, 1, 2, . . . , N − 1} in an

input image P . NP is the neighborhood setting for all adjacent voxels. We assume a

4-connected neighborhood setting in the following sections. For each surface S i and

each voxel p ∈ P , we introduce a binary variable xip: x
i
p = 1 means p is in the interior

of the object whose boundary surface is S i; xip = 0 indicates p is in the exterior of

the object. The energy function is then defined as Eq.(7.1). Di
p(x

i
p) is the region

term penalty for assigning label xip to voxel p for segmenting surface S i. V i
pq(x

i
p, x

i
q) is

the boundary term penalty for assigning labels xip and xiq to two neighboring voxels

p and q for surface S i. η is a weighting coefficient between the region term and the

boundary term.

E(x) =
∑
p∈P
i∈LN

Di
p(x

i
p) + η

∑
(p,q)∈NP
i∈LN

V i
pq(x

i
p, x

i
q) +

∑
q=parent(p)

i∈LN

H i
pq(x

i
p, x

i
q) (7.1)

The third term H i
pq(x

i
p, x

i
q) is used to enforce the star-shaped prior. We adopt the
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consistent digital ray system computed by Chun et al.’s algorithm [19] to define the

star-shaped prior. Recall that we use dig(c, p) to denote a consistent digital ray

segment between the star center c and the grid point (voxel) p. We say voxel q is the

parent of voxel p, denote by parent(p) = q, if (p, q) ∈ NP and q ∈ dig(c, p). In this

case, p is the child of q. The star-shaped prior term H i
pq(x

i
p, x

i
q) is then defined as

follows.

H i
pq(x

i
p, x

i
q) =



0 if xip = xiq

∞ if xip = 1 and xiq = 0

0 if xip = 0 and xiq = 1

(7.2)

7.2.2 Transforming to the minimum s-t cut problem

In this section, we present our algorithm for optimally segmenting multi-

surfaces with a star-shaped prior by minimizing the energy function E(x) in Eq.(7.1).

The basic idea is to transform the optimization problem as computing a minimum s-t

cut in a constructed graph encoding the energy function as well as the geometric con-

straints of the target surfaces, including the individual surface smoothness constraints

and the surface distance constraints.

The constructed graph G consists of two dummy vertices, a source s and a

sink t, and N subgraphs Gi. For each surface S i we construct a subgraph Gi =

{V i, Aist ∪ Aib ∪ Aistar}, in which V i is the set of vertices with each corresponding

to exactly one voxel in P . To simplify the notation, we use xip to denote both the

random variable in Eq.(7.1) and its corresponding vertex in Gi. The region and
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boundary terms can be encoded by arcs Aist and Aib utilizing Boykov’s graph-cut

framework [12]. The arcs Aistar are used to enforce the star-shaped prior, as described

below.

Encoding the star-shaped prior. For any pair of neighboring vertices xip and xiq

with (p, q) ∈ NP , if q = parent(p) according to the consistent digital ray segment

tree T , then we put an arc from xip to xiq with an infinite weight ∞. In this way,

if the voxel corresponding to the child vertex xip belongs to the object (belongs to

the source set in the min s-t cut), then the voxel corresponding to its parent vertex

xiq must also belong to the object. Otherwise, the induced s-t cut is not finite. The

arrowed arcs in Fig.7.1b shows Aistar for a specific surface S i. Aistar exactly encodes

the star-shaped prior term in Eq.(7.2) and thus ensures the segmented surfaces are

star-shaped.

The use of a consistent digital ray system [19] is critical for the incorpo-

ration of the star-shaped prior without further image interpolation. In Veksler’s

method [97], the Euclidean rays are resampling in an ad hoc fashion to enforce the

star-shaped prior, which may lead to visually inconsistent segmentation (e.g., with

artificial ‘holes’). In fact, the digital resampling in Veksler’s method cannot guarantee

some basic Euclidean geometry axioms [19] about the rays.

Encoding the min-max surface distance constraints. Without loss of general-

ity, we assume that surface S i is in the interior of the object whose boundary surface

is S i+1. Assume that voxel p is on S i+1 and q ∈ dig(c, p) is on S i. The surface

distance between S i+1 and S i along dig(c, p) is defined as dist(c, p)−dist(c, q), where
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dist(x, y) is the Euclidean distance between voxels x and y. We require that the

surface distance between S i+1 and S i should be no larger than a constant SDmax and

no less than a constant SDmin. These min-max surface distance constraints can be

enforced by introducing additional arcs between Gi+1 and Gi.

c

c

jb

jb

1i
px +

i
qx

- ( , )jcb ray c b

- ( , )jcb ray c b

1iS +

iS

arcs enforcing max surface distance constraints
arcs enforcing min surface distance constraints

(a) surface distance constraints

c
jb

1jb +

i
px

i
qx

- ( , )jcb ray c b

1- ( , )jcb ray c b +

(b) smoothness constraints

Figure 7.2: Enforcing the geometric constraints. a Arcs with an infinite weight are

added between two subgraphs for the segmentation of surfaces S i+1 and S i, respec-

tively, to enforce the surface distance constraints. b The arcs (black) with an infinite

weight are introduced between the vertices corresponding to two adjacent center-

boundary rays cb-ray(c, bj) and cb-ray(c, bj+1) to enforce the surface smoothness con-

strains.

A center-boundary ray is a digital ray segment between the star center c and

an image boundary voxel b, denoted by cb-ray(c, b), i.e., cb-ray(c, b) = dig(c, b)(see

Fig.7.1b). We enforce the min-max surface distance constraints between S i+1 and S i

along each center-boundary ray cb-ray(c, b).

For any vertex xi+1
p in Gi+1 with p ∈ cb-ray(c, b), we find the vertex xiq in

Gi with q ∈ cb-ray(c, b), such that dist(c, p) − dist(c, q) ≤ SDmax and dist(c, p) −

dist(c, parent(q)) > SDmax. Then we add an arc (xi+1
p , xiq) with an infinite weight∞.

Intuitively, if p is on surface S i+1, then q must be the interior of the object whose

boundary surface is S i due to the infinite weight of the arc introduced. This ensures
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the surface distance along cb-ray(c, b) does not exceed SDmax, enforcing the maximum

surface distance constraints.

Similarly, we can enforce the minimum surface distance constraints between

S i+1 and S i along each center-boundary ray cb-ray(c, b). For any vertex xi+1
p in Gi+1

with p ∈ cb-ray(c, b), we compute the vertex xiq in Gi with q ∈ cb-ray(c, b), such that

dist(c, p)−dist(c, q) ≥ SDmin and dist(c, p)−dist(c, child(q)) < SDmin. Then add an

arc (xiq, x
i+1
p ) with infinite weight to enforce the minimum surface distance constraint.

Fig.7.2(a) illustrates the arcs enforcing the min-max surface distance constraints.

Encoding the surface smoothness constraints. Suppose that two voxels p

and q are both on the surface S i, and p ∈ cb-ray(c, bj), q ∈ cb-ray(c, bj+1), in

which bj and bj+1 are two adjacent voxels on the image boundary. The smooth-

ness variation of surface S i between cb-ray(c, bj) and cb-ray(c, bj+1) is then defined

as |dist(c, p)−dist(c, q)|. The surface smoothness constraint ensures that the smooth-

ness variation between any two adjacent center-boundary rays does not exceed a non-

negative constant SMmax. For each Gi and any vertex xip with p ∈ cb-ray(c, bj),

compute the vertex xiq with q ∈ cb-ray(c, bj+1) but q 6∈ cb-ray(c, bj), such that

dist(c, p) − dist(c, q) ≤ SMmax and dist(c, p) − dist(c, parent(q)) > SMmax. We

then add an arc (xip, x
i
q) with an infinite weight of ∞ to enforce the constraint that

dist(c, p) − dist(c, q) ≤ SMmax. Similarly, we can enforce the constraint dist(c, q) −

dist(c, p) ≤ SMmax. Fig.7.2(b) shows how the arcs are added for the smoothness

constraints.
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7.3 Application to Optic Cup and Disc Segmentation

The applicability of the reported approach is demonstrated on the automated

segmentation of optic cup and disc surfaces (borders). Although the application is in

2D, our method is applicable for higher dimensional image segmentation.

Stereo fundus color photographs and spectral-domain optical coherence to-

mography (SD-OCT) scans of the optic nerve head are obtained from 70 eyes of 35

patients with glaucoma at the same day. Each fundus image contains 1019×768 vox-

els with voxel size of 30×30µm. Each SD-OCT scan contains 200×200×1024 voxels

with voxel size of 30×30×2µm. The 2D fundus image is registered with the SD-OCT

scan and cropped to 101 × 101 for convenience of processing. The manual reference

standard on the 2D fundus image is obtained from three expert segmentations based

on consensus, i.e., each voxel is assigned a label which receives the majority of votes.

7.3.1 Cost function for region term and boundary term

For the region term, first we generate three probability maps which provide

the probabilities for each voxel to be cup (region within the inner boundary), rim (re-

gion between the inner and outer boundaries), and background voxel (region outside

the outer boundary) respectively, then we convert them to the region term form in

Eq.(7.1).

A machine-learning based approach which combines information from the 3D

SD-OCT scan and 2D fundus image is used [51]. The dataset is divided into 10

folds and at each time one fold is left out and the classifier is trained on the rest of
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nine folds to predict the three probability maps of the one fold that has been left

out. Denote X0, X1, X2 as the three probability maps for cup region, rim region, and

background, respectively. The region term is then computed: Di
p(0) = C;Di

p(1) =

− log(X i
p) − (− log(X i+1

p )) + C (i = 0, 1), in which C is a large enough constant to

make sure both Di
p(0) and Di

p(1) are nonnegative.

We used the class-uncertainty method [58] to compute the boundary term

for the disc surface. For each voxel p, the class-uncertainty method computes the

uncertainty up, of classifying each voxel as object or background. Similarly, for any

q with (p, q) ∈ NP , the uncertainty uq is also computed. Boundary voxels tend to

have the highest uncertainty when doing such classification. The boundary term is

defined as V 1
pq(0, 1) = V 1

pq(1, 0) = − log(up+uq
2

). Currently we cannot obtain reliable

boundary information for the cup surface, so we set the boundary term for the cup

surface to be zero.

7.3.2 Parameter settings and experiment settings

The parameters in the experiment are set as follows. The minimum and max-

imum surface distance constraints are loosely set to be 1 voxel and 50 voxels respec-

tively. The smoothness constraints for the cup and disc surfaces are set 2 and 3 voxels

respectively. η is 5. All datasets share the same parameter settings.

The star centers for 65 of the fundus images are automatically estimated by

thresholding the probability map for cup region to get an estimated segmentation

of cup and computing centroid of it as the star center. For the remaining 5 fundus
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cases, we manually specify the star center location due to a large error of automatic

estimation.

The segmentation results are compared to the reference standard obtained

from three independent observers. The manual segmentation by three observers are

also compared with each other which is presented as inter-observer variability, e.g.,

obs1 vs. obs2, etc. As a reference, the automatic segmentation using the most likely

label according to the probability map in the region cost is also conducted, denoted

as the region-only segmentation.

Dice coefficient (DSC) is used to evaluate the results in terms of overlapping

volume. Unsigned surface distance error and signed surface distance error are used

to evaluate the results in terms of surface positioning error. As shown in Fig.7.3c,

the region-only segmentation does not always have a well-defined boundary. We use

the method in [51] to generate an “average” surface for the region-only segmentation

and measure the unsigned/signed surface distance error using this “average” surface.

7.3.3 Results

Table.7.1 shows the DSC for inter-observer variability, the region-only segmen-

tation and the proposed segmentation. The bold numbers show the best results. A

paired student t-test shows that the proposed method shows significant improvement

in the rim DSC compared to the region-only segmentation. There is no significant

difference for the cup DSC.

Table.7.2 and Table.7.3 show the unsigned and signed surface distance errors.
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Table 7.1: Dice coefficient (larger is better).

obs1 vs. obs2 obs2 vs. obs3 obs1 vs. obs3 region-only proposed

cup 0.791 ± 0.173 0.817 ± 0.153 0.806 ± 0.122 0.827 ± 0.159 0.829 ± 0.148

rim 0.580 ± 0.170 0.645 ± 0.178 0.510 ± 0.212 0.628 ± 0.155 0.643 ± 0.151

Table 7.2: Unsigned surface distance error in unit voxel (smaller is better).

obs1 vs. obs2 obs2 vs. obs3 obs1 vs. obs3 region-only proposed

cup 3.00 ± 1.59 3.13 ± 1.24 2.80 ± 1.56 2.61 ± 1.51 2.54 ± 1.26

disc 3.32 ± 1.23 2.81 ± 1.28 1.84 ± 0.93 2.32 ± 1.12 2.30 ± 1.15

A paired student t-test shows the proposed method achieves significant improvement

in the unsigned/signed surface distance error for the disc surface, and in the signed

surface distance error for the cup surface. There is no significant difference in the

unsigned surface distance error for the cup surface.

Illustrative results are shown in Fig.7.3. In the first row, the star-shaped prior

and smoothness constraints removes intensive noise in the region-only segmentation.

In the second row c, note the cup surface and disc surface are attached to each other

in the left portion (temporal side). But enforcing the minimum surface distance

constraint of 1 voxel makes sure the cup and disc surfaces are detached from each

other (second row d).

Given the cost function available, the processing time for each 101×101 image

Table 7.3: Signed surface distance error in unit voxel.

obs1 vs. obs2 obs2 vs. obs3 obs1 vs. obs3 region-only proposed

cup 0.40 ± 2.08 -1.84 ± 1.84 -2.24 ± 2.11 0.69 ± 2.30 0.16 ± 2.2

disc -2.36 ± 1.27 -1.01 ± 1.02 1.29 ± 1.29 -0.07 ± 1.70 -0.01 ± 1.72
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is about 0.3 seconds.

(a) input (b) manual ref (c) region-only (d) proposed

Figure 7.3: Illustrative results of region-only and star-shaped segmentation.

7.4 Conclusion

We presented a novel graph-based optimal segmentation method which can

simultaneously segment multiple interacting star-shaped surfaces. Consistent seg-

mentation results are achieved by using the consistent digital ray system [19]. Mini-

mum and maximum surface distance constraints and smoothness constraints are also

enforced. Validation experiments on 70 clinical eye scans showed the accuracy im-

provement by applying the proposed method.
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CHAPTER 8
OPTIMAL MULTI-OBJECT SEGMENTATION WITH NOVEL

GRADIENT VECTOR FLOW SHAPE PRIOR

8.1 Introduction

Shape prior are widely used in medical image segmentation due to the similar

intensity profile and weak boundary between target object and background [64, 97,

99, 87, 86, 7, 101]. For example, the popular deformable model [2, 102, 60, 61] and

LOGISMOS [106, 64, 110, 86, 87] methods (layered optimal graph image segmentation

of multiple objects and surfaces) use mesh in physical space to ensure the segmen-

tation is roughly aligned with some initial model or pre-segmentation. However, the

mesh representation is prone to self-intersection, or “mesh folding” problem, which

requires complex and expensive algorithms to mitigate. In this chapter, we propose

a novel shape prior directly embedded in the voxel grid space, based on gradient

vector flow (GVF) of a pre-segmentation. The flexible and powerful shape prior can

be straightforwardly extended to simultaneously segment multiple interacting ob-

jects with minimum separation distance constraint. The problem is formulated as a

Markov random field problem whose exact solution can be efficiently computed in a

single minimum s-t cut in an appropriately constructed graph.

The proposed algorithm is validated on the two multi-object segmentation

applications: brain tissue segmentation in MRI images, and the bladder/prostate

segmentation in CT images. Both sets of experiment show superior or competitive

performance of the proposed method to other state-of-art methods.
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8.1.1 Shape prior by mesh

Deformable model first initializes a mesh representing the target object close

to the desirable location and orientation [26, 2, 102]. The boundary and regional

information are then used to evolve the mesh vertices along its normal direction to

adhere to image content. An elastic force is also often used to limit the amount of

warp to enforce the shape prior [26, 102]. Such evolution is repeated multiple times

until convergence.

LOGISMOS is a popular multi-surface segmentation method with the ability

of enforcing minimum and/or maximum surface distance constraints among multiple

target surfaces [106, 52, 110]. The method first builds a mesh based on an initial

pre-segmentation of the target object. The image is then resampled usually along

the normal direction at each mesh vertex to constitute a graph node column. The

graph nodes in these columns represent the set of all possible target surface locations

sampled at each mesh vertex normal direction. Various arcs are then added among

the nodes to ensure the surface intersects each column exactly once, enforce a hard

smoothness constraint to limit the abrupt surface jump between adjacent columns,

and a soft convex function encouraging the surface shape to further conform to the

base mesh [109, 87, 86]. The globally optimal surface location is then found by solving

a single minimum s-t cut in the constructed graph. In sum, the shape prior is enforced

by first limiting the surface search space within the graph column reach, and then

enforcing a hard and a soft smoothness constraint among adjacent columns.

However, the mesh-based shape prior representation have several shortcom-
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ings in practice. Firstly, the mesh may “self-intersect” or “fold” in the returned

solution, causing undesired dramatic topology change from the prior shape. The

problem is especially noticeable at high curvature locations such as concavities and

bifurcations (see Figure.8.1). To avoid this problem, the deformable method need to

run expensive self-intersection detection and remeshing algorithms after each evolu-

tion step [66, 70, 100]. For LOGISMOS, various methods are proposed to prevent the

graph node column intersection. The electrical field [109], flow lines [67] and gradient

vector flow [64] build curved graph columns instead of traditional straight normal

direction columns. The omnidirectional displacement method [42] distributes graph

nodes uniformly in a sphere centered at each mesh vertex instead of along a column.

However, the resulting MRF problem can no longer be solved by minimum s-t cut

and the high computation cost restricts it to be only applied at high curvature regions

instead of whole image.

Secondly, it is difficult to enforce interaction priors among multiple objects,

since all mesh vertices and edges are represented in continuous physical coordinate.

For deformable model method, complex mesh collision detection algorithm have to be

run at the end of each evolving iteration to avoid two close objects from intersecting

each other [46, 90]. For LOGISMOG-based methods, nesting surfaces must share

the same base mesh in order to enforce the minimum/maximum surface distance

constraints [64]. This makes it impossible to enforce independent shape priors for

different nesting surfaces. For multiple excluding surfaces, Song et. al. [86, 87] have

to merge the graph columns from prostate and bladder meshes in the “interactive”
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(a) column intersection (b) folded mesh

Figure 8.1: Mesh folding at bifurcation locations. (a) shows part of LOGISMOS graph

columns built based on pre-segmentation (light brown region). The red columns and

blue columns are intersecting in the circled area. This may lead to folded mesh as

shown in (b) in the solution. Although deformed model do not explicitly build such

columns, the mesh folding may still happen during mesh evolving.

region to enforce the exclusion relationship between them.

8.1.2 Shape prior directly in voxel space

Another group of methods embed the shape prior directly in the voxel space,

fundamentally eliminating the mesh intersection problem. Veksler et. al. [97] intro-

duced a flexible star-shaped prior which requires every point in target object to be

visible to a predefined star center point through a straight line totally within the

object. Infinite arcs mimicing straight rays spanning from star center are added in

a graph-cut based graph to encode the star-shaped prior. However, these arcs are

obtained from a heuristic algorithm. Bai et. al. [10] uses consistent digital ray to

systematically build the infinite arcs so that a tight Hausdorff distance bound can be

obtained between the discretized rays and its Euclidean counterpart. Isack et. al. [38]
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proposes “hedgehog” shape prior which extends the star-shaped prior. A vector field

based on the distance transform of the user scribbles is used to limit the segmented

surface normals to be within certain angles tolerance from the scribble normals. This

ensures the skeleton of the segmentation to be roughly the same as the user scribbles.

However, it may be difficult to draw scribbles capturing the object skeleton in 3D

medical images, especially for complex surfaces such as white tissue surface in brain.

If more detailed template or pre-segmentation is available, then the distance

transform of the aligned template can be incorporated into the pairwise term of the

graph-cut framework to softly penalize the difference between segmentation and the

template [99, 7]. However, it is difficult to balance this soft shape prior term with

other image information terms.

In contrast, the star-shaped prior [97, 10] and “hedgehog” shape prior [38]

clearly defines a class of valid shapes. Any given shape can be crisply classified as

either valid or invalid. The shape prior term is always enforced as a hard constraint

which rejects, not just penalizes, invalid shapes. Thus, we do not have to balance the

shape prior term and the image information term. Note these shape priors are not

overly restrictive since large variations are allowed in the set of valid shapes.

8.1.3 Proposed method contributions

Gradient vector flow (GVF) [107] defines a diffusion of the gradient vectors

from a grayscale or binary edge map. When computed from edge map, it defines

a vector roughly pointing towards the closest strongest edge at each voxel. In this
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chapter, however, we are going to show that if computed from a volumetric pre-

segmentation, instead of an edge map, the GVF encodes descriptive shape information

from the pre-segmentation.

We propose a novel gradient vector flow shape prior which is embedded directly

into the voxel space, an Markov random field (MRF) formulation to encode it, and an

efficient way to optimize the proposed MRF energy. In summary, our contributions

are:

• A novel and flexible gradient vector flow shape prior embedded directly in the

voxel space, avoiding the mesh intersection problem in mesh shape prior repre-

sentation.

• No need to balance the shape prior term and image information term, since

the proposed GVF shape prior crisply classifies every possible segmentation as

either valid or invalid.

• An efficient MRF formulation to encode the shape prior and image information,

whose exact solution can be computed in a single minimum s-t cut.

• Easy to incorporate inclusion/exclusion multi-object interaction constraints.

8.2 Methods

We first introduce the gradient vector flow and the GVF shape prior, then

we show how to incorporate such shape prior into an MRF formulation and how to

segment multiple interacting objects simultaneously.
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8.2.1 Gradient vector flow

Suppose P is the set of image voxels in a 3D grid, then binary segmentation

assigns every voxel p ∈ P a label fp ∈ L, where L = {0, 1} is the set of available

labels. Assuming a pre-segmentation Ŝ = {p|f̂p = 1, p ∈ P} is available, then the

gradient of the pre-segmentation ∇Ŝ is only nonzero around the pre-segmentation

boundary (Fig.8.2a). In the narrow range where ∇Ŝ is nonzero, the gradient vectors

encode the pre-segmentation shape information in the sense that they are the most

direct direction pointing towards the inside of the pre-segmentation.

In order to enforce the shape prior in a larger range, we need to use GVF to

propagate the gradient vectors. The GVF takes the raw gradient vector field ∇Ŝ as

input, and computes another vector field h to minimize the following energy.

EGVF (h) =

∫∫∫
P
‖∇Ŝ‖2‖h−∇Ŝ‖2 + µ‖∇h‖2 dx dy dz (8.1)

The first term is the product of gradient magnitude and squared difference of output

vector field and input gradient. The second term is the sum of squares of the partial

derivatives of the output GVF vectors. More specifically, the first term is dominant

when input gradient ∇Ŝ is strong, which encourages the output vector field h to align

well with input gradient. The second term is dominant when input gradient is small,

which ensures the output vector field to change smoothly.

In summary, at regions with strong input gradient, GVF follows the input

gradient vector field; at regions with weak or no input data, GVF interpolates from

nearby locations to ensure the output vector field changes smoothly. The constant
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(a) Gradient (b) GVF (c) discretized GVF

Figure 8.2: Use GVF to encode shape prior information throughout the image. (a)

shows that raw gradient of the pre-segmentation is restricted to a narrow band around

the boundary. GVF propagate it smoothly throughout the image as in (b). A dis-

cretized GVF in (c) builds a GVF path for every non-core voxels connecting to one

of the core voxels (red circles).

µ controls how strong the interpolation should be. The net effect is that the input

gradient vector field is smoothly propagated from a narrow band surrounding the

pre-segmentation boundary to all of the image. Fig.8.2b shows how a GVF vector

field propagates gradient information (Fig.8.2a) to all voxels of the image.

8.2.2 GVF shape prior in grid space

From Fig.8.2b, we can see that the GVF magnitude is very small at the

“core” of pre-segmentation due to the competition of boundary gradients from mul-

tiple directions. Formally we define the object “core” C as the set of voxels inside

the pre-segmentation with GVF magnitude smaller than a small threshold θC, i.e.,

C = {p ∈ P|p ∈ Ŝ, ‖hp‖ < θC}. The red circled voxels in Fig.8.2c are the core voxels

of the white pre-segmentation.

For every non-core voxel in the GVF field, we can find a smooth path following
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which one can travel to one of the core voxels. If one voxel is part of the object, then

all voxels along the GVF path connecting it to the core should also be part of object

if we want to roughly preserve the shape of the pre-segmentation. Otherwise, a hole

or undesired cavity may appear along the GVF paths.

Since segmentation requires us to label each voxel in a grid space, we discretize

the GVF field so that the GVF vector at each voxel points exactly towards one of

its neighbor voxels. More concretely, the GVF vector field h is transformed into the

discretized GVF vector field hD. For every pixel p, hDp = −→pq where q = argmaxq∈Np hp·

−→pq/(‖hp‖‖−→pq‖). Np is the set of neighboring voxels of voxel p. In another word,

hDp is the vector from p to its neighbor voxel with the smallest angle error when

approximating GVF vector hp. See Fig.8.2c for an example of the discretized GVF

field.

For any non-core voxel p /∈ C, the GVF path connecting itself to the object

core is defined as GP (p) = q0, q1, . . . , qK , such that −→pq,−−→q0q1, . . . ,
−−−−→qK−1qK ∈ hD, and

qK ∈ C. The GVF shape prior is defined as: if one voxel p is part of the object,

then all voxels along the GVF path GP (p) are also part of the object. Geometrically,

it makes sure all voxels along the GVF path connecting p to the object core are all

part of foreground if p is. In Fig.8.3a, voxel p1 and p2 are part of the foreground,

but part of the GVF path connecting them to the object core (thick black lines) are

not labeled as foreground (highlighted by thick red lines). Thus, the GVF shape

prior based on the pre-segmentation (light brown region) is violated by the current

segmentation (deep brown region), due to undesired concavities and holes.



www.manaraa.com

158

undesired concavity
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(a) GVF shape prior
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Figure 8.3: GVF shape prior and inclusion/exclusion multi-object interaction

prior. (a) demonstrates that exaggerated concavity and holes not existing in pre-

segmentation would violate the GVF shape prior. (b) and (c) show the inclusion and

exclusion interaction relationship between object i and j with minimum distance δij

in between.

8.2.3 Shape prior MRF penalty function

For a single voxel p, the GVF shape prior can be enforced by enforcing the

following penalty function between p and all q ∈ GP (p).

φ(fp, fq) =∞ · [fp = 1, fq = 0] (8.2)

where [·] is the indicator function which returns 1 when the enclosed condition

is true and 0 otherwise. The penalty function φ(fp, fq) returns ∞ when p is part

of object, and q is background. Otherwise, the penalty function returns 0. In a

minimization MRF problem, this ensures all solution violating the GVF shape prior

are not valid.

Due to the possible large number of voxels along the GVF path, enforcing
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φ(fp, fq) between p and all q ∈ GP (p) naively is computationally expensive, especially

considering this process have to be repeated for every voxel p ∈ P . Fortunately, it

can be shown [97] that GVF shape prior can be sufficiently enforced by using only

φ(fp, fq0), φ(fq0 , fq1), . . . , φ(fqK−1
, fqK ) where q0, q1, . . . , qK = GP (p). This way, the

penalty function only need to be enforced between p and its nearest neighbor indicated

by the discretized GVF vector hDp . This leads to the observation that to enforce the

GVF shape prior for all voxels p ∈ P , we only need to iterate through the discretized

GVF vector field hD (Eq.(8.3)). Note ‖hD‖ = ‖P − C‖, so we only need to enforce

the GVF penalty function between linear number of voxel pairs.

∑
−→pq∈hD

φ(fp, fq) =
∑
−→pq∈hD

∞ · [fp = 1, fq = 0] (8.3)

8.2.4 MRF formulation

Suppose NP is the neighborhood system in image P , then the overall MRF

energy with GVF shape prior is as follows.

E(fP) =
∑
p∈P

D(fp) +
∑

(p,q)∈NP

Vpq(fp, fq) +
∑
−→pq∈hD

φ(fp, fq) (8.4)

Dp(fp) is a data term describing the appearance information of voxel p. The

more likely it belongs to foreground, the smaller Dp(fp = 1) is, and the larger the

Dp(fp = 0) is. Vpq(fp, fq) is a pairwise smoothness term based on the boundary/edge

information between neighboring voxels p and q. If fp = fq, then Vpq(fp, fq) = 0.

Otherwise, Vpq(fp, fq) is a nonnegative number that is inversely proportional to the
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likelihood of an edge between neighboring voxels p and q. In general, the smoothness

term encourages a smoother boundary between object and background. The more

likely an edge lies between neighboring voxels, the smaller the smoothness penalty is.

The third term in Eq.(8.4) enforces the GVF shape prior as in Eq.(8.3). Note

this term is submodular since φ(0, 0) + φ(1, 1) < φ(1, 0) + φ(0, 1). Thus, the overall

energy is submodular, whose optimal solution can be computed by a minimum s-t

cut in an appropriately built graph [50] based on graph-cut method [12].

8.2.5 Simultaneous multi-objects segmentation

Medical image applications often require multiple objects to be segmented

simultaneously, e.g., prostate and bladder [87, 86], white matter and gray matter in

brain [64]. It is advantageous to incorporate anatomical prior information between

multiple objects when possible. Based on a graph-cut formulation, Delong et. al. [24]

enforced inclusion or exclusion relationships between two objects with a predefined

minimum distance in between. Fig.8.3b and 8.3c show examples of such inclusion

and exclusion interactions between two objects i and j, with a minimum distance δij

between them.

Since the proposed energy in Eq.(8.4) can be solved by graph-cut, it is straight-

forward to apply the same multi-object constraints (minimum distance between nested

surfaces or excluded objects). The trick to constructK binary variables f 1
p , f

2
p , . . . , f

K
p ∈

{0, 1} for each voxel p, where fkp = 1 indicates voxel p is part of k-th object, and not

part of k-th object otherwise. Multiple energy functions using fkP are encoded by
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multiple graph-cut based subgraphs. Various arcs are then introduced between pairs

of objects with inclusion/exclusion interaction to enforce the minimum distance con-

straints.

It is also possible to enforce the maximum surface distance between pairs of

nested surfaces when they share the same pre-segmentation. In this case, the two

surfaces share the common GVF paths which serve as graph columns in grid space.

This common column structure enables the maximum surface distance constraint to

be enforced using techniques used in LOGISMOS [10].

8.3 Experiment

We validated the proposed method on two applications: the prostate and

bladder segmentation in CT images, and the brain tissue segmentation in MRI T1

images. The first application aims to segment two mutually exclusive objects, whereas

the brain tissue segmentation aims to segment two nesting surfaces which separates

three different types of tissues (white matter, gray matter, and cerebrospinal fluid).

8.3.1 Experiment settings

For both applications, we first obtain an initial segmentation, i.e., pre-segmentation.

The proposed GVF shape prior is defined based on this pre-segmentation. The final

segmentation output accuracy is assessed by two metrics: Dice similarity coefficient

(DSC) and average symmetric surface distance (ASSD). The Dice similarity coeffi-

cient is used to measure how well two volumes overlap with each other. Assume

A and B are two volumes, then the DSC between the two volumes is defined as
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2|A∩B|/(|A|+ |B|), which ranges between 0 and 1. The larger the DSC is, the bet-

ter the two volumes are aligned, with 1 indicating a perfect overlapping. The average

symmetric surface distance (ASSD) is used to measure how close two segmented sur-

faces are. Let d(x,A) denote the shortest distance between a point x and any point

on the surface A. The ASSD between the segmented boundary surfaces A and B by

two different methods is defined as ASSD =
∑

a∈A d(a,B) +
∑

b∈B d(b, A)|A|+ |B|.

It measures the average distance from any point on a contour/surface to the other

contour/surface. The ASSD metric has a range of [0,+∞]. The smaller ASSD is, the

better the two segmented surfaces/contours agree with each other. If ASSD = 0,

then the two segmentations are identical.

8.3.2 Brain segmentation: data and compared methods

For brain tissue segmentation, 18 T1-weighted scans of normal subjects from

the Internet Brain Segmentation Repository (IBSR) [1] were used (commonly know

as “IBSR 18” in literature) [104, 95]. The image size is 256 × 128 × 256 with voxel

spacing range from 0.837 × 1.5 × 0.837mm3 to 1 × 1.5 × 1mm3. Each scan comes

with a brain mask marking voxels inside skull. Each voxel inside the brain mask is

labeled by expert as one of three labels: white matter (WM), gray matter (GM), and

cerebrospinal fluid (CSF). Using this public dataset allows us to directly compare the

proposed method to various state-of-art methods.

Valverde et al. [95] validated 10 brain segmentation algorithms on the IBSR

dataset, aiming to evaluate a wide set of available technique and tools (refer Table.1
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in [95] for software sources and versions). We compare our method to the results

reported. These ten algorithms are summarized below: FAST [113] uses expectation

maximization with K-means initialization to optimize an MRF model; SPM5 [6] and

SPM8 [5] are two versions of the SPM toolbox based on iterative Gaussian mixture

model, atlas registration and bias correction; GAMIXTURE [92] estimates a Gaussian

mixture model by genetic algorithm (GA); ANN [91] implements a self organizing

map clustering image data; FCM [69] uses a fuzzy c-means clustering algorithm;

KNN [22] uses a k-nearest neighbor algorithm based on automatic registration of prior

probability atlases; SVPASEG [93] uses iterative conditional modes (ICM) method

with genetic algorithm initialization to optimize an MRF model; FANTASM [68]

extends FCM by adding a spatial term in the objective function; and PVC [78] builds

a maximum-a-posteriori (MAP) model with ICM optimization. We refer readers to

Table.1 in [95] for software sources and versions used in reporting these numbers.

In addition to the above 10 methods, we also include the result reported by

the following state-of-art methods: discriminative model-constrained EM approach

combines supervised discriminative modeling and unsupervised statistical expectation

maximization (EM) segmentation into an integrated Baysian framework; adaptive

Markov modeling based on mutual information [8]; hidden Markov chain model [17]

which unifies partial volume effect, bias field correction, and a probabilistic atlas; prior

knowledge driven multiscale segmentation [3] embeds an atlas prior in a multi-scale

pyramid.



www.manaraa.com

164

8.3.3 Brain segmentation: workflow

8.3.3.1 Preprocessing

The images are first masked by the brain mask to exclude voxels outside the

skull, reoriented to have the standard orientation (‘RAI’ orientation), and resampled

to have unit voxel spacing. We use 2-fold cross validation for this experiment. The

18 images are randomly split into two disjoint set, with one of them being training

set and another being test set. Then the role of training/testing set are reversed for

both sets. To account for the inter-scan intensity profile difference, we first compute

a mean brain histogram within the training set. Then we run histogram matching to

match every test image to the mean training brain histogram.

8.3.3.2 Pre-segmentation

The BRAINSABC software1 [112] is used to classify every voxel within the

brain mask into one of the three tissue classes: WM, GM, and CSF. BRAINSABC

first deformably registers input image to an atlas, then performs atlas-based tissue

classification using an expectation-maximization approach [96]. The largest connected

component consisted of white matter voxels are used as the pre-segmentation of the

inner surface, i.e., WM-GM boundary. The largest connected component consisted

of white matter and gray matter voxels is used as the pre-segmentation of the outer

surface, i.e., GM-CSF boundary. The GVF shape priors are defined with respect to

these pre-segmentations. To simplify notation, we would call the WM-GM boundary

1Available online: https://github.com/BRAINSia/BRAINSTools
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as the WM surface, and the GM-CSF boundary as the GM surface. The WM surface

is set to be included in the GM surface with a minimum distance of 1 mm.

8.3.3.3 Energy term design

A random forest using a simple four-dimensional feature vector is then used to

generate voxelwise probability maps for all three types of tissues. The four features are

x/y/z coordinates and intensity for each voxel. Using techniques from Sec.8.2.5, two

variables fWM
p , f

WM/GM
p ∈ {0, 1} are introduced for each voxel p. The corresponding

data terms D(·) in Eq.(8.4) for the two labels are defined in Eq.(8.5) and (8.6).

DWM
p (fWM

p = 1) ∝ − log Pr(WM|p)

DWM/GM
p (fWM/GM

p = 1) ∝ − log Pr(WM/GM|p)
(8.5)

Dl
p(f

l
p = 0) ∝ − log(1− Pr(l|p)), l ∈ {WM,WM/GM} (8.6)

Note our two surfaces WM-GM and GM-CSF highlights at different intensity

ranges, it makes sense to adjust the contrast of image when computing the boundary

terms V (·) in Eq.(8.4). More specifically, the intensity is transformed by a sigmoid

function controlled by parameters αl and βl in Eq.(8.7), which enhances the contrast

roughly within the range [βl − 3αl, βl + 3αl]. Here l ∈ {WM,GM/WM}. These pa-

rameters are set to (αWM, βWM) = (10, 180) and (αGM/WM, βGM/WM) = (30, 120) by

visually checking the training set images. Since all images’ histograms are matched

to the reference mean training brain histogram, the above contrast adjustment pa-
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rameters should be robust to different scans.

Ī lp ∝
1

1 + exp(− Ip−βl
αl

)
(8.7)

Vpq(f
l
p 6= f lq) ∝ exp(−(Ī lp − Ī lq)/σ2) (8.8)

Vpq(f
l
p = f lq) = 0 (8.9)

The gradient between neighboring voxels p and q is then used as the boundary term

(Eq.(8.8)). The more different intensities neighboring voxels have, the smaller the

boundary penalty is. On the other hand, if the neighboring voxels have very similar

intensities, then the boundary penalty will be large, strongly encouraging two voxels

to share the same labeling. The parameter σ in Eq.(8.8) is set to 0.1 based on the

training set scans.

8.3.4 Brain segmentation: results

One example segmentation from different views is shown in Fig.8.4. The three

columns show the original, manual contour and the GVF shape prior segmentations

respectively. We can see the segmentation aligns well with manual contour. Fig.8.5

shows the 3D rendering of WM-GM and GM-CSF surfaces from three subjects. The

proposed method is shown to agree well with the manual contour in 3D space.

Quantitatively we compare the Dice coefficient (DSC) of WM and GM re-

gions with various published methods (Sec.8.3.2). Table.8.1 lists the DSC mean and

standard deviation of various state-of-art methods and the proposed method. Our

method is giving the best accuracy on GM, with a large margin compared to most of
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Figure 8.4: Example segmentation using proposed GVF shape prior. The red contour

is WM-GM boundary. The green contour is GM-CSF boundary.
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manual WM-GM
proposed
WM-GM

manual GM-CSF
proposed
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Figure 8.5: 3D renderings of WM-GM and GM-CSF surfaces of manual contour and

the proposed GVF shape prior segmentation, from 3 different subjects.

the other methods. The WM accuracy is also very competitive. In fact, if we visu-

alize the results in a column chart (Fig.8.6), it is obvious that the proposed method

gives accurate segmentation of both WM and GM. In contrast, most other methods

performs well on WM, but relatively poorly on GM. The surface distance error metric

(ASSD) is not reported since many published methods did not report them.

8.3.5 Brain segmentation: sensitivity to pre-segmentation

Since the shape prior is defined based on a pre-segmentation, it is natural to

wonder how sensitive the method is with respect to the pre-segmentation. To study

the sensitivity, we artificially warped the image on a 20×20×20 grid using B-Spline.
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Table 8.1: Proposed method’s brain tissue segmentation

DSC compared to other state-of-art methods.

method WM GM

FAST [113] 0.89 ± 0.02 0.74 ± 0.04

SPM5 [6] 0.86 ± 0.02 0.68 ± 0.07

SPM8 [5] 0.88 ± 0.01 0.81 ± 0.02

GAMIXTURE [92] 0.87 ± 0.02 0.78 ± 0.08

ANN [91] 0.87 ± 0.03 0.70 ± 0.07

FCM [69] 0.88 ± 0.03 0.70 ± 0.06

KNN [22] 0.86 ± 0.03 0.79 ± 0.03

SVPASEG [93] 0.86 ± 0.02 0.81 ± 0.03

FANTASM [68] 0.88 ± 0.03 0.71 ± 0.06

PVC [78] 0.83 ± 0.07 0.70 ± 0.08

Awate et al. [8] 0.89 ± 0.02 0.81 ± 0.04

Akselrod-Ballin et al. [3] 0.87 0.86

Bricq et al.[17] 0.87 ± 0.02 0.80 ± 0.06

Wels et al. [104] 0.87 ± 0.05 0.83 ± 0.12

proposed 0.87 ± 0.03 0.88 ± 0.02

0
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0.7
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1

D
SC

DSC: proposed method vs. others WM GM

Figure 8.6: DSC of two tissue types (WM and GM) for each method listed in

Table.8.1. The proposed method achieves accurate segmentation on both types of

tissue, while most other methods are performing well on WM, but relatively poor on

GM.
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At each B-Spline grid point, a random Gaussian noise deform force with zero mean and

standard deviation of σptb along each dimension is applied. Then the proposed GVF

shape prior segmentation algorithm is run using pre-segmentation perturbed with

various perturbation magnitudes σptb. The DSC and ASSD between the perturbed

and the manual expert contour are measured to quantify the deformation magnitude

(reported as ‘pre-seg DSC/ASSD’ in Table.8.2). The DSC and ASSD between output

of the proposed algorithm and the manual expert contour are reported to validate how

sensitive the proposed method is to pre-segmentation (reported as ‘final DSC/ASSD’

in Table.8.2).

As the perturbation magnitude parameter σptb increases from 0 to 5, the pro-

posed method’s final output barely change at all, even though the DSC between the

deformed pre-segmentation and manual contour dropped by about 0.04 in DSC for

both WM and GM. As the perturbation magnitude comes even larger, the proposed

method accuracy starts to decrease more significantly. But even at the largest per-

turbation magnitude (σptb = 20), the DSC only drops around 0.03 for both WM and

GM, while the deformed pre-segmentation only has 0.512 and 0.498 DSC. In terms

of surface distance error ASSD, the pre-segmentation is already perturbed by 1.14

mm on WM and 0.75 mm on GM, but the output ASSD only drops by 0.22 and

0.30 mm. Fig.8.7 visually conveys this trend. In the first row of Fig.8.7, As the

deformed pre-segmentation rapidly deviates from the original one (Fig.8.7a,8.7b), the

final proposed method output accuracy only decreases mildly (Fig.8.7c,8.7d).
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Table 8.2: Sensitivity of proposed method with respect to pre-

segmentation deformation. The first column is the perturbation

magnitude parameter σptb value. The surface error (ASSD) values

are reported in unit mm.

ptb
mag

pre-seg DSC final DSC pre-seg ASSD final ASSD

WM GM WM GM WM GM WM GM

0 0.794 0.775 0.866 0.878 1.01 0.93 0.59 0.67

2 0.772 0.754 0.865 0.877 1.08 0.99 0.59 0.68

3 0.754 0.736 0.864 0.877 1.15 1.03 0.60 0.68

5 0.712 0.696 0.862 0.876 1.32 1.13 0.62 0.71

10 0.621 0.608 0.852 0.868 1.68 1.36 0.69 0.79

15 0.559 0.545 0.841 0.857 1.93 1.52 0.75 0.88

20 0.512 0.498 0.832 0.848 2.15 1.68 0.81 0.97
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Figure 8.7: Sensitivity of the proposed method with respect to pre-segmentation de-

formation (generated from Table.8.2.). As the deformation greatly deviates from the

pre-segmentation, the proposed method only suffers a mild decrease in performance,

for both tissue types and both metrics.
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8.3.6 Bladder/prostate segmentation: data and compared methods

For prostate and bladder segmentation, 21 volumetric CT images from dif-

ferent patients with prostate cancer were used. The image spacing ranged from

0.98× 0.98× 3.00mm3 to 1.60× 1.60× 3.00mm3. Expert manual contours of bladder

and prostate are available for each scan. Eight scans are randomly selected to be used

as training set. The other 13 scans are used as testing set. All parameters are tuned

on training set. All reported results are from testing set.

The proposed GVF shape prior segmentation method is compared to the mesh-

based method proposed by Song et al. [86]. They iteratively evolve the bladder and

prostate meshes by using the LOGISMOS methods. In each iteration, the bladder and

prostate meshes are first evolved independently, and then deformed jointly by defining

a “mutually interacting region” to ensure the two object meshes do not intersect. A

soft shape prior is also incorporated in the prostate mesh to encourage the shape

conforming to a trained model.

8.3.7 Bladder/prostate segmentation: workflow

8.3.7.1 Pre-segmentation

We use the same pre-segmentation used by Qi et al. [86]. The prostate shape is

relatively consistent across scans, thus a point distribution model built from training

images are aligned to each test scan. The Procrustes analysis method is employed to

get the prostate pre-segmentation. Due to the large shape variations in bladder, a

geodesic active contour method is used to generate the bladder pre-segmentation. The
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prostate and bladder are set to be two exclusive objects with a minimum separation

distance of 0 mm.

8.3.7.2 Energy term design

Similar to the brain tissue segmentation, a random forest with a four-dimensional

feature vector (normalized x/y/z coordinates and intensity) is trained to generate a

probability map of bladder and prostate. Due to the poor soft-tissue contrast in CT

scans, a Chan-Vese model [18] is also trained to more accurately model the intensity

difference between prostate and bladder. The two probability maps generated by ran-

dom forest and Chan-Vase model are added together with equal weight as the data

term (Dp(·) in Eq.(8.4)). The smoothness term design is the same as in brain tissue

segmentation (Sec.8.3.3).

8.3.8 Bladder/prostate segmentation: results

The proposed method’s accuracy is presented in Table.8.3. Our method is giv-

ing better accuracy on bladder based on both DSC and ASSD metrics. On prostate,

our method is giving a better DSC but slightly worse ASSD values. A 2-tailed paired

t-test shows that our method is statistically significantly different from Song et al. [86]

on bladder (p < 0.05) on both DSC and ASSD metric. On prostate, both methods

are not statistically different.

Fig.8.8 shows one example of the proposed segmentation and the mesh-based

LOGISMOS method. The mesh-based LOGISMOS segmentation gives very irregular

surfaces compared to the smooth appearance of the manual contour and the proposed
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Table 8.3: Bladder/prostate segmentation accuracy

compared to mesh-based LOGISMOS method [86].

metric object Song et al. [86] proposed

DSC
bladder 0.933 ± 0.015 0.941 ± 0.017

prostate 0.824 ± 0.036 0.835 ± 0.015

ASSD
(mm)

bladder 0.89 ± 0.26 0.79 ± 0.28

prostate 1.48 ± 0.47 1.64 ± 0.28

method. The spiky error at the top of bladder in the mesh-based segmentation (third

column in Fig.8.8) signal high risk of mesh folding, which has to be accounted for by

special procedures discussed in Sec.8.1.1. In contrast, the proposed GVF shape prior

segmentation gives accurate and smooth segmentation of bladder and prostate.

8.4 Conclusion

We propose the novel GVF shape prior which can be directly embedded in

the voxel grid space, avoiding the mesh folding problem fundamentally. The flexi-

ble and powerful GVF shape prior can be incorporated in an efficient multi-object

MRF formulation. The proposed shape prior segmentation method is validated on

the application of brain tissue segmentation (two nesting/including objects), and

the bladder/prostate segmentation (two excluding objects). The experiment results

demonstrates superior or competitive segmentation accuracy compared to other state-

of-art methods.
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Figure 8.8: Illustrative example of segmentations by the proposed GVF shape prior

segmentation method and the mesh-based LOGISMOS method [86]. Red and greeen

contour are for bladder and prostate, respectively.
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CHAPTER 9
CONCLUSION

In this dissertation, a series of useful labeling problem models incorporating

various prior information are proposed and validated. All proposed models are moti-

vated by practical problems. After judicious theoretical manipulations, all proposed

formulations admit efficient and globally optimal solution. We first review the in-

tricate structures of the original problems which inspired the formulations. Then

we briefly discuss about why efficient and globally optimal solution is important for

natural/medical image applications.

The labeling problem with ordering constraints is motivated by the natural

scene labeling problem. Due to its multiple labeling nature, the constraints are com-

plicated and hard to enforce in a graph-cut framework. However, since it is so com-

plicated that it becomes restrictive, we can find its general layout. With this layout

in mind, a dynamic programming method with only linear memory and O(N1.5) time

is devised and optimally solves the problem.

The fact that human makes mistakes while drawing scribbles inspired the ro-

bust segmentation project. To achieve the intuitive balance that the same percentage

of ignored human scribble should incur at least the same percentage of segmentation

energy drop, the ratio energy is proposed. Seemingly hard to optimize, the ratio

energy function is transformed into a series of linear energy functions which can be

efficiently solved by graph-cut.

The multi-scale technique applied on MVCBCT is inspired by the general ob-
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servation that the larger the neighborhood is, the more accurate the segmentation is.

However, the cost of naively increasing neighborhood size is prohibitive. Connecting

every voxel with the over-segmented region it lies in effectively simulates a larger

neighborhood while limiting the number of additional pairwise relationships.

Leveraging multi-modality information can be expected to boost the segmen-

tation performance. We enforce the inter-modality agreement prior to make the

4DCT-PET co-segmentation achieve better accuracy than using CT alone. The ob-

servation that PET and CT tumor segmentation volumes agree at core and far away

from the highly metabolic regions, but differ most around the tumor boundary, leads

to the incorporation of location context prior into the overall PET-CT context prior

design. The additional location prior improved the co-segmentation accuracy.

Both star-shape prior and gradient vector flow (GVF) shape prior are moti-

vated by removing the resampling step in graph-search, which introduces not only ex-

tra processing steps, but also practice difficulties (column-intersection/mesh-folding).

Choosing voxels, instead of resampled graph nodes, as the labeling problem variables

bring us three fold benefits: 1) avoids resampling; 2) the problem is conceptually

simplified from a multi-labeling graph-search problem to a binary-labeling graph-cut

problem; 3) the direct correspondence of two subgraphs occupying the same voxel

grid enable straightforward multi-object inclusion/exclusion interaction. The other

very important factor is the use of consistent digital ray and GVF field to encode the

shape prior information directly in the voxel grid space.

By judiciously exploiting the above intricate structures of the problem, we
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proposed and validated multiple formulations incorporating various prior information.

One key feature of the models presented in this dissertation is that they all admit

efficient and globally optimal solutions.

With efficient solutions the proposed models can be applied on large scale

problems, such as 3D/4D medical image segmentations. All except the robust seg-

mentation problem can be solved by either a single minimum s-t cut or dynamic

programming. For the iterative robust segmentation problem, we proved a strong

theoretical bound on the number of iterations, and validated that in practice it also

converges in just a few iterations.

With globally optimal solutions, the proposed models become robust to local

noise, and easier to debug if unexpected result is returned. More specifically, we can

focus on improving the cost/energy term design, instead of facing the dilemma of

wondering whether the cost is bad or the optimization algorithm is weak that we are

trapped in a bad local minimum.

9.1 Limitations and Future Work

One limitation of the proposed work is that some formulations, such as 4DCT-

PET co-segmentation and multi-scale segmentation, requires extra subgraph. For

example, in the multi-scale segmentation, an over-segmentation regionwise layer is

needed in addition to the original voxelwise layer. This increases running time and

memory consumption. One possible future work on this direction is to define a search-

ing region of interest (ROI) based on some initial results on lower resolution. For
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example, if we can get a rough segmentation in a downsampled-by-2 version of the

image, then we can add only the voxels near to the rough segmentation boundary to

the graph. All other far-from-boundary voxels can be assigned their lower resolution

image labeling.

Another limitation of the proposed work is that even though the global opti-

mality guarantee eliminates the need to worry about the strength of the optimization

algorithm, the models still works only as good as the input cost/energy term designs

are. How to design good cost term can be a challenging task. In the GVF shape

prior project, random forest based machine learning method is used to generate data

term cost. For other applications, how to design the cost term, or the system that

generates the cost term, is an open and challenging question.

Recently deep learning has become a hot topic. The convolutional neural

network (CNN) has been proven very effective at extracting useful abstract features

from raw image. Some research has been done to combine CNN with conditional

random field (CRF) [108, 114]. The idea is to use CNN for extracting image features

and CRF for inferring. All proposed models in this dissertation are actually Markov

random field (MRF), a special case of CRF. It would be exciting to combine the

state-of-art feature extraction CNN with the also state-of-art inferring MRF.

All models proposed in this dissertation make use of unary and pairwise terms.

For unary term, manual expert tracings can be straightforwardly used as training

labels. But it is challenging to learn pairwise terms due to the lack of training label

reference. How to effectively set pairwise term is another future work direction.
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